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Overview

Given a large amount of high dimensional data, e.g. 1 billion SIFT features (128GB). Approximate nearest neighbor (ANN)
search aims to find

N(y) = arg min
x∈X

‖y − x‖22

for a query y. Using the GPU, a new re-ranking method and a tree-based index-structur for reducing the exact vector comparisons
by factor 122, the total query time is decreased drastically. The proposed method (PQT) allows solving high-dimensional, large
scale ANN problems in time critical real-world applications, like loop-closing in videos on a GPU.
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Evaluated on 1 million vector benchmark set for CPU and GPU .

Index-Structure

A common approach is to partition the dataset, e.g. using K-means to find K centroids (vector quantization). This has also
been done on vector parts, where bucket-combinations across parts produces bins in the product space (product quantization).
We propose a tree-based index structure (level 1 , level 2 ) over all bins. In practise, a codebook of 32 vectors allows us to
create 4 trillions bins instead of 1 million bins as in previous approaches. After pruning, finding the best bin only requires 80
full vector comparisons.
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Algorithm

The algorithm consists of an offline and online phase, where the offline phase is pre-computed only once.

Offline phase Using K-means we cluster a subset of the database to generate the index structure as follows:
1: procedure offline
2: . generate index-structure
3: sample subset D′ ⊆ D from data set
4: . generate index-structure
5: cluster each part of D′ independently into buckets
6: for each part-bucket of do
7: refine part into buckets (VectorQuantization)

8:

9: . fill index-structure
10: for each vector x in data set D do
11: j ← calculate id from index-structure
12: put v into bin with id hash(j)
13: for each part [x ]p of x do
14: extract reranking information (λ, ci , cj)

Online phase During the query, only a fraction of second-level clusters are considered. This reduces the actual number of
vector comparisons on the SIFT-1M dataset compared to previous approaches from 24576 (which would take 0.13 ms on the
GPU) to 200 comparisons for real-world data sets. Our entire query takes only 0.02 ms!
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Find candidate bins: To identify good bins in the full space, we need to merge the per-part information of sorted part-buckets.
A pre-computed heuristic merges pairs of parts (see above, right), which produces similar results to the optimal sequential
solution using Dijkstra’s algorithm.

Re-ranking candidate vectors: We collect at most n vectors from the sorted bin sequence in LC. After sorting based on
approximate distances, we drop vectors erroneously placed into the bins from hashing.
Encoding the approximate position of x , i.e., projecting each part [x ]p onto the nearest line through two first-level clusters,
only requires (ci , cj , λk) which is already computed in the offline phase.
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The approximation error in ‖y − x‖22 is bounded by the projection errors δi . All vectors in LC are sorted by their approximated
distance

‖y − x‖22 =

P∑

p=1

‖[y ]p − [x ]p‖22 =

P∑

p=1

‖[y ]p − f (ci , cj , λk)‖22.

This is the first parallel re-ranking approach which is tailored to GPU architectures.
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Parallel re-ranking applied to raw MNIST data.

Results

Accuracy Given a list of candidate vectors, the search quality is measured with recall R@x , ie. the proportion of query vectors
for which the nearest neighbor is ranked in the first x positions.
Compared to Inverted-Multi-Index [1] (IMI) we achieve nearly the same recall on the 1-billion SIFT dataset with much faster
query times (0.15ms/0.025 with/without reranking compared to 49ms). Without any re-ranking, the recall of the unsorted
list LC is illustrated in the following figure.
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Timing The time for creating the index structures in previous CPU-based methods has to be measured in days whereas the
entire offline-phase of our pipeline only takes 80min on the GPU for 1 billion SIFT features.

method ms R@1 R@10 R@100 speedup

FLANN [5] 5.32 0.97 - - × 9.6
LOPQ [3] 51.1 0.51 0.93 0.97 × 1
IVFADC* [4] 11.2 0.28 0.70 0.93 × 4.5
PQT (CPU) 4.89 0.45 0.86 0.98 × 10.4

PQT (GPU) 0.02 0.51 0.83 0.86 × 2555

GPU brutef. 23.7 1 1 1 × 2

Total querytime on the standard benchmark set SIFT1M.
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