

Million-Scale Point-Cloud Learning Beyond Grid-Worlds (Flex-Conv)

Fabian Groh¹, Patrick Wieschollek^{1,2}, Hendrik P.A. Lensch¹

¹ University of Tübingen, ² Max Planck Institute for Intelligent Systems, Tübingen

CyberValley

In a nutshell: Learning directly from million-scale unstructured point-cloud data using a novel deep convolutional network.

Why Using Point-Cloud Data?

Point-clouds are the natural representation of 3D data without any loss of information. Note, voxels do not scale to large resolution due to memory constraints.

	Pe	erforr	nanc	e	Memory					
Method		Forw	ard E	Backy	ward	For	ward	Backward		
Flex-Conv (pure tensorflow)		1 829	ms	273	88ms	34 015	.2MB	63 270.8MB		
Flex-Conv (hand-crafted CUI	DA)	24	ms	26	5ms	8	.4MB	8.7MB		
Grid-Conv (cuDNN)	16	ms	1.5ms		1574	.1MB	153.4MB			
+ + + + + + + + + + + + + + + + + + +	(1/4, 64, 8) (1/4, 64, 8) (1/4, 64, 8)	(1/16, 128, 8) (1/16, 128, 8) (1/16, 128, 8) (1/64, 128, 8)	(1/64, 128, 8) $(1/256, 256, 8)$ $(1/256, 256, 8)$ $(1/256, 256, 8)$	(1/1024, 256, 8) (1/1024, 256, 8) (1/1024, 256, 8)	(1/4096, 512, 4) (1/4096, 512, 4)	$\begin{array}{c cccc} & (1/1024, 256, 8) \\ & (1/1024, 256, 8) \\ & + & \\ & (1/256, 256, 8) \\ & (1/256, 256, 8) \end{array}$	+ (1/64, 128, 8) (1/64, 128, 8) (1/16, 128, 8)	$(1/16, 128, 8)$ $(1/16, 128, 8)$ $(1/4, 64, 8)$ $(1/4, 64, 8)$ $(1/4, 64, 8)$ $(1/1, 64, 8)$ $(1/1, 64, 8)$ $(1/1, 0_{c}, 8)$ $(1/1, n_{c}, 8)$		

Importance of hand-crafted CUDA implementations is shown in a performance test for 32k points. The low memory footprint allows for deep networks as shown in our semantic segmentation architecture.

Why Is Large-Scale Important?

Previous methods [1, 2, 3] subsample small blocks (left) from large point-clouds, instead, ours can handle up to 7 Millions in a single forward pass (linear scaling).

Flex-Convolution

 $(w \circledast f)[\vec{p}_{\ell}] = \sum_{c \in C} \sum_{n \in N} w_c(\vec{p}_{\ell} - \vec{p}_n) f(c, \vec{p}_n)$

Results

Synthetic: ShapeNet part segmentation pairs (left: ground-truth & right: prediction) and quantitative results per category and mIoU (%) for different methods and inference speed (on a Nvidia GeForce GTX 1080 Ti).

	Airpl.	Bag	Cap	Car	Chair	Earph.	Guitar	Knife	Lamp	Laptop	Motorb.	Mug	Pistol	Rocket	Skateb.	Table	mIoU	shapes/sec
Kd-Network [6]	80.1	74.6	74.3	70.3	88.6	73.5	90.2	87.2	81.0	94.9	57.4	86.7	78.1	51.8	69.9	80.3	77.4	n.a.
PointNet [1]	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6	80.4	n.a.
PointNet++ [2]	82.4	79.0	87.7	77.3	90.8	71.8	91.0	85.9	83.7	95.3	71.6	94.1	81.3	58.7	76.4	82.6	81.9	2.7
SPLATNet3D [5]	81.9	83.9	88.6	79.5	90.1	73.5	91.3	84.7	84.5	96.3	69.7	95.0	81.7	59.2	70.4	81.3	82.0	9.4
SGPN [3]	80.4	78.6	78.8	71.5	88.6	78.0	90.9	83.0	78.8	95.8	77.8	93.8	87.4	60.1	92.3	89.4	82.8	n.a.
Ours	83.6	91.2	96.7	79.5	84.7	71.7	92.0	86.5	83.2	96.6	71.7	95.7	86.1	74.8	81.4	84.5	85.0	489.3

Real-World: Class specific average precision (AP) on the 2D-3D-S dataset (‡uses additional input features and * uses non-trivial post-processing)

This formulation can be considered as a linear approximation of the lookup table, with the advantage of being defined everywhere. As a natural extension it can represent several image operations:

	Table	Chair	Sofa	Bookc.	Board	Ceiling	Floor	Wall	Beam	Col.	Wind.	Door	mAP	
Armenin <i>et al.</i> [4]*	46.02	16.15	6.78	54.71	3.91	71.61	88.70	72.86	66.67	91.77	25.92	54.11	49.93	
Armenin <i>et al.</i> [4]‡	39.87	11.43	4.91	57.76	3.73	50.74	80.48	65.59	68.53	85.08	21.17	45.39	44.19	
PointNet [1]*	46.67	33.80	4.76	n.a.	11.72	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
SGPN [3]*	46.90	40.77	6.38	47.61	11.05	79.44	66.29	88.77	77.98	60.71	66.62	56.75	54.35	
Ours	67.02	52.75	16.61	39.26	47.68	87.33	96.10	65.52	56.83	55.10	57.66	36.76	56.55	
RO	GB				С	Durs			Ground-Truth					
Area 6														
Area 4														
Room A														

Usage: Our implementation can be used as drop-in replacement:

grid-base convolution

net = np.random.rand(B, h, w, Din)
net = tf.layers.convolution_2d(net, Dout, 3, activation=tf.nn.relu)
net = tf.layers.max_pooling2d(net, 2, 2)

flex-convolution

net, pos = np.random.rand(B, Din, N), np.random.randn(B, Dp, N)
knn = knn_bruteforce(pos, K=8)
net = flex_convolution(net, pos, knn, Dout, activation=tf.nn.relu)
net = flex_pooling(net, knn)

- [1] Qi etal. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation., (CVPR 2017).
- [2] Qi at al. *PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space.*, (NIPS 2017).
- [3] Wang et al. Sgpn: Similarity group proposal network for 3d point cloud instance segmentation., (CVPR 2018).
- [4] Armeni etal. 3D Semantic Parsing of Large-Scale Indoor Spaces., (CVPR 2016).
- [5] Su etal. SPLATNet: Sparse Lattice Networks for Point Cloud Processing., (CVPR 2018).
- [6] Klokov etal. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models., (ICCV 2017).

Code+Video

