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Abstract—Aligning video sequences is a fundamental yet the data. Besides its limitation to out-door scenes, GPS has a
still unsolved component for a broad range of applications in  common precision of three meters [7]. While minor alignment
computer graphics and vision. Most classical image processing errors would not be visible in vanilla image alignment, any

methods cannot be directly applied to related video problems due h f te ali t id b i
to the high amount of underlying data and their limit to small ~SUCh non-irame accurate alignment would become apparen

changes in appearance. We present a scalable and robust methodduring simultaneous video playback.
for computing a non-linear temporal video alignment. The In many real-world scenarios, these explicit synchronization

approach autonomously manages its training data for learning signals are not available as most consumer cameras only
a meaningful representation in an iterative procedure each time o.4de the creation date of the video le within the meta-data.

increasing its own knowledge. It leverages on the nature of the Direct] ving | ina based hes like [8] to |
videos themselves to remove the need for manually created labels. irectly applying learning based approaches like [8] to learn

While previous alignment methods similarly consider weather the alignment is not possible in this case. Producing a dense
conditions, season and illumination, our approach is able to align labeling by manual effort is not feasible eitﬁeOur dataset
videos from data recorded months apart. consists of 28 million frames. Note, the ILSVRC challerige [9]
is based on 1.4 milliodabeledimages only. Particularly, in
our setting, we deal with unstructured video contefithout
Understanding and assessing the current situation aroundang explicit knowledge about which frames or entire videos
in a single glance is necessary to interact with the world as we match or not.
know it. Looking at Figur¢ L within few tens of milliseconds, To overcome these problems, we propose a novel learning-
we can verify that the highlighted frames show the same scessed approach:
although they are recorded at different times, having different_ Section[T) introduces a new challenging dataset for
illumination, motion blur and seasonal effects. For this task, video-alignment covering rural scenes as well as city
we are focusing with ease on useful traits like the location of  scenes across a year under different appearances.
the houses or the shape of the street and are masking irrelevant |, Sectio Y we propose a novel training protocol for
features such as traf ¢ or the actual road condition. From our  training a neural network to match frames from different
experience we are familiar with all effects that might change  yjgeos of the same scemdthout any annotation.

the current appearance and understand the global context. _ Sectior[ IV-C presents a novel method for robust identi-
~ For computing a temporatideo alignment(synchroniza- cation and computation of matching tours for partially
tion), i.e. a dense frame-to-frame mapping for each time gyerlapping video pairs, which is able to automatically
step in the involved videos with consistency along the time  getect start and end points of the matching tour.
dimension, classical approaches are based on matching local

descriptors [[1], [[2], [[8], [[4]. While they allow for accurate 1. RELATED WORK

video alignments, they are limited to video pairs of short The process of video alignment holds a natural relation to
video clips sharing very similar appearance. However, longghage alignment which was addressed by several studiés [10],
videos capturing the same content at different times miggl_tg using stereo correspondence estimationl [11] or robust
look completely different besides additional challenges suglfke| descriptors [[12]. Algorithms like video stitching for
as ego- and object-motion or changes of the view angle a§@ating panoramic video§][2], automatic summarization of
illumination. videos [13], HDR video generatiori [14], vehicle detection
Though data-driven approaches like deep convolutional n§dr advanced driver assistance systems [15] and video-copy
ral networks have proven excellent performance and capabjktection [16] among others are heavily dependent on such
ities of global scene understandirid [5], they usually requite ropust and accurate temporal alignment of video-frames
a large amount of high-quality labeled training data. Ongatween multiple videos.
way to automate the labeling process would be to recordpasic video alignment is commonly used in the eld of

synchronization signals such as Longitudinal Time Codggyman action retrieval or surveillance motion capture. Here,

genlock, GPS data or a landmark-based audio ngerprinfding similarities of human actions in videos are based on
ing [6] during acquisition. Solutions based on this kind of

additional data are as accurate as the device which registeréahoroughly aligning a video pair of 8 min length by hand takes 41min.

I. INTRODUCTION



Fig. 1. Given a pair of videos (top) our network has learned to robustly embed each frame (left) in a high dimensional feature space (middle) independently
from appearance changes caused by weather, traf c or seasonal effects. Given these feature vectors, the algorithm retrieves the most plausible frame mappint
for a synchronous playback (dark path, right). Our approach autonomously learned to compare these frames duringitihamiagy human annotation or

labels.

human skeletori [17]. Baziat al. introduced ActionSnapping
[18] which focuses on synchronizing actions performed b}
humans such as weightlifting, baseball pitching or dancin
assuming a static background scene and frontal views.

Most approaches for spatio-temporal video alignment [1
[20], [211], [22], |23] assume a linear temporal correspondence,
i.e. a constant time shift between successive frames Orrig. 2. Comparing the data sets of related work. Each pair shows a typical
constant change in playback speed for one video. Sand amching frame-pair. a)[24] only shows small changes in appearance and
Teller [3] compute a matching-likelihood of 3D motion toperspective, b)EE_O] has a totally different view angles and c) [31] requires

. . . only a constant time shift for alignment. For our dataset d), an alignment

match videos. A non-linear solution was proposed by Weing method has to handle a different appearance and produce a playback with
al. [4] based on a matching histogram of SIFT features usimgn-linear speed.
nearest neighbour search. Here, the search space increases with
the length of the video sequence. In terms of application the ] ]
most similar work to ours is from Evangelidis al. [24], [25], Ccamera mounte_:d on the dashboard before_z every journey with-
which allows for sub-frame accurate alignments of at most ot special adjustments. However, the view angle does not
minute video snippets under negligible appearance changed@afure differences as large as in place recognition tasks [8].
rather simple street scenes. Another related task is to recogniz&he acquired videos feature both rural landscapes and urban
places from different view angles. A data-driven version ¢fcenes under varying traf ¢ conditions such as temporary road
VLAD descriptors by Arandjeloviet al. [8] demonstrates the WOrks, rush hour, diverse weather conditioasy, snowfall,
capability of neural networks to detect speci ¢ locations. Conf@in, and seasonal environment appearance, for example ef-
pared to place recognition video alignment however requirf&ts of vegetation as well as different daytime illumination
a much ner resolution. FigurE] 2 illustrates typical exampleésee Figurd [2d) and the supplemental video https://youtu.be/
of frame-pairs from different datasets which are considered W&Vsw4qoe70).
similar for the speci ¢ task. Most videos show journeys between the same two cities but

Learning similarities by training neural networks was donglill have a variation in start and end locations and the actual
previously for very specic applications such as signaturé®@ds driven. The temporal alignment of the videos thus poses
veri cation [26], face recognition[[27],[[28] and comparing@ further challenge when trying to match stationary situations
image patches for depth estimation|[29]. They rely on datasél® waiting in traf ¢ during rush hour with a video showing

with extensive human annotations and reliable ground-truifile traf c. This is different to linear video alignment tasks
data. like copy-detection described i [31].

The enormous range of possible variations in the video con-
lIl. DATASET tent which also suffers from a noisy acquisitiand different
viewing angles, wipers, raindrops, camera transformation, etc.)
Our underlying dataset comprises of 602 full-HBOFPS requires some understanding of context of the entire scene
videos (1.8 TB of raw data) capturing 260 hours of conrather than a simple local feature matching like histogram
muters' car journeys on partially overlapping routes betwedrased method< [4]/ [18]/[25]. Moreover, the videos might
April 2012 and March 2013 and spanning over approximateshow interrupted conteng.g when the lens is cleaned or
16;00km. The videos were captured using a GoPro Heror2mounted during recording.

dynamic time warping of various sensor features to track t{=IEG_ e o


https://youtu.be/vhVsw4qoe70
https://youtu.be/vhVsw4qoe70

IV. UNSUPERVISEDCURRICULUM LEARNING

We propose a framework to learn descriptors for all frames
such that the Euclidean distance represents a similarity metric
between captured scenes or locations. By properly designing
the training protocol this generic approach features fast match-
ing computation, robustness against seasonal effects and it
does not rely on pre-existing labels for training.

The similarity metric can be exploited to robustly synchro-
nize videos as will be explained in Sectipn Ty-C. While rst
establishing the procedure to align partially overlapping video
pairs (X;Y ) it is straightforward to extend it to multiple
videos in a collection (see Figu@l3)' Fig. 3. Let (a;p;n) be a frame-triplet with descriptoré a; p; n)

a) Curriculum Learning.: The algorithm alternates be-produced by the same CNN. During training, the CNN is optimized to embed
tween two steps: théearning step and thdabel generation positive framesp close to the an<_:ho_r poira,_ while n_egative frames are _

. . N pulled away from the anchor point if the distance is smaller than a margin

step. In the learning step, we assume given labelsnd |,
train a neural network to produce meaningful descriptors
for a similarity metric . The label-generation is based on ] ) ) o )
the current version of the trained network combined witRarginm — Figure[3). In practice, we constrain this embedding
tour matching (Sectiofi TVAC) to exploit temporal consistencyP V& on thed-dimensional hyperspheree. k ik, =1 and
Given the learned similarity metric novel, potentially more S€tm to 0:5.
reliable labels are produced, replacing the old ones. B. Label Generating Step

Over multiple iterations, more and more sophisticated and
more informative training data is generated. None of the
steps requires any human annotation nor recorded GPS sigqg

triplet

While the learning step is rather straight-forward the chal-
ge lies in automatically generating appropriate frame-triplet
éls as training data. This label-generating stegomatically

A. Learning Step harvestsnew training data for subsequent learning steps by

e%<plicitly exploiting the coherence in videos and by proposing

In the leaming step we want to learn an embedding 9hd judging video alignments based on current knowledge.

frames to establish a similarity measure between individu.ﬁl,1 . . . s
i . ) e goal is to gather more and more informative training data
frames(x;y). Relying on the currently available labels from

i : : n each iteration by successively increasing the dif cuiltg, to
the training data we train a convolutional neural networ o . . .
. . : . . nd positive frame pairs which show the same scene location
(CNN) [32] to predict a high-dimensional descriptor for . : : )
. . . but with potentially different appearance as well as nding
each framé such that the Euclidean distance . . . . o
negative pairs which currently are assigned rather similar
GY) 7 (xy) =k gk, (1) embeddings. This is achieved in three waves:

. - . Iteration O: intra-videosampling of nearby frames for initial
is small when the frames are similar and vice versa. We use training

the standard ResNet-50 architecture [33] and add a projec“f?@ration 1+: inter-video sampling of frames from matching
from thepool5layer to learn the 1000-dimensional descriptors tours

- AS CNNstte_nd dtoRIeell\rlntedge_ Itefrs 'T)_thf rst Ia3_/t'_3rs’lteration 2+: transitive inter-video sampling of frames from
we use a pre-trained ResNet version for object recognition as matching tours by propagation of alignments to

initialization. other videos

In order to efciently train the concept of similarity the Aft h iterati f the label i ¢
triplet neural network approach [34] with weight-sharing is ~' o/ ach leration ot the fabel-generaling step we re-
y %lned the neural network in the learning step, alternating

used, which generalizes well to unseen examples. It requi{)«'ét traini d label i
labels™ = (a;p;n) in the form of triplets of frames: for an etween training and fabel generation.

anchor framea the label needs one similar or positive fram%i.I a) Iter?uon 0"t. In Ittalratt)llonl % (])ne't:ast tr? splve the
p and one negative/dissimilar franme The similarity metric emma of generating refiable fabeiswithout having any
; S . frained network for proposing distancesinstead we rely on
(Eqg. (1)) is enforced by minimizing the triplet loss by Hoffer, . L . :
et al. [34] the mhergnt c_ohgrence within the same video. Any arb|tr§ry
i frame-pair which is at most 15 frames apart serves as positive
L(ap;n= m+k , pkg k . nkg (2) sample(a;p). Any other random frame suf ciently far away
+ from a is regarded as a negative frame
for some margimm 2 R. The rst term penalizes embeddings b) Iteration 1+.: After the rst iteration the network is
of similar frame-pairs(a;p) that are too far away from trained and can now produce features for each framei
each other in the high dimensional feature space. The lattenich is carried out for every tenth frame of all videos in the
penalizes embeddings of negative (non-matching) frame-paii@a set. One can use the proposedor approximating the
(a;n) if they are too close to each other (closer than sonpair-wise similarity, but since the network is not fully trained
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Fig. 5. Computed similarity matrix from the rst iteration in our training
process (left). As they contain highly correlated entries, directly nding a
matching tour would fail. After the de-correlation of the cost matrix (middle)
nding a path (right) is signi cantly more robust.

the correct matching path becomes more obvious and easier
to detect throughout the iterative training.

c) Iteration 2+.: Computing a cost matrix for each single
video pair is inef cient. Instead, we propagate detected match-
ing tours transitively to other pairs. Based on the property of
“X andY have a matching tour”, denoted &6 VY, is
a equivalence relation (meeting the requirements re exivity,

Fig. 4. Development of the cost matrix of the same video pair Fhroughog},mmetry and transitivity), we propose a transitive sampling.
the iterative training process. Dark entries represent frame-pairs that

e . - L .
considered similar having a small distance in the feature space. Note h%WfaCt' our entire dataset Can_ be Spllt Into d'Sthjt equwalent
the path (red) of similar frame-pairs becomes more distinct. Large coher@tassesV=  under the relationX V when videosX

frﬁgir?e”rsh?é?]’;ightthﬁl;’tith*}n‘gdf‘%?:;ﬁ;”;;g“:}';dgr;e"gvzgi/rf atatrafc light Wand v share a part of the same tour. Hence for any two
' ' videosX andY 2 V= we already know the existence of a
matching tourX V andV Y. Transitivity also directly
yet it is essential to judge whether we can rely on a particuldV€S Us @ matching tour foX Y if both share some
frame encoding or not. overlap. This allqws us to sparsely .sample \{ldeo—palrs and
pagate matching frames across videos. Using a tree-based

The criteria for accepting a positive frame pair or detecti 0 fruct d h lexit | h
a negative one in this step is based on temporal coherence f§iFX structure reduces the complexity @(nlogn) when

potential matching toursbetweendistinct videos (X;Y ). A synchronizingn videos (see Figurf 13). Through transitivity
cost matrix ' one can establish matching tours which so far could not be

detected using the previously trained embeddings. With this
C=((xs yDxy; X2Xy2Y (3) iterative process we can quickly generate a huge number of
challenging and informative training tripletéa; p; n) even for
can be computed containing all coarse pair-wise distancesvisfeos which have been captured months apart.
frames. Corresponding frames should have a small distanceStarting in iteration 2 we mix the obtained training examples
Though this might not always be the case in early iteratiorfépm inter-video sampling (iteration 1+) and transitive inter-
it might already be possible to detect a matching tour a&leo sampling (iteration 2+).
explained in Sectiop IV-Ci.e. to nd an optimal path through o .
the cost matrix (see Figufe 4). If the path is suf ciently distinct" Finding Matching Tours
the path will synchronize both videos correctly and all nodes We will now describe how to nd a matching tour given
on the path resemble positive pairs with revand columnp, a cost matrixC. The entire iterative scheme is based on
independent of the currently proposed measifee p). Some robustly detecting false-positives from the network prediction
new positive pairs might be found this way giving hints omand producing complex training data in a reliable way.
how to optimize the embedding in the next training phase. 1) Pre-Processing: De-correlate Cost®articularly in the
Similarly, we can harvest challenging negative pgasn) by early iterations, the similarity matrice§ produced by the
just choosing a column suf ciently far away from the path. CNN contain a lot of false predictions, since it is not yet fully
Most informative will be such a pair if (a;n) is currently adapted to the task. These errors exhibit a low-rank structure,
rather small, indicating similarity though the frames clearligecause any frame that is not correctly embedded is likely
should be rated distinct. to corrupt an entire column (or row) of the similarity matrix
Though we might not nd all possible paths betweerleft of Figure[$). Additionally, some of the pairs are, indeed
all videos yet, the resulting labelda;p;n) will be more rather similar although we would like to treat them as different.
informative than in the previous iteration as the appearanEer example, many journeys through rural areas with little
between two videos will more likely be different even foinformation but crop elds on both sides of the road appear
matching frames. The process is visualized in Figyre 4 whesgtremely similar. As a pre-processing to the tour extraction

i)




we remove those correlation egfects by subtracting a low-rank = ¢y e o1 c14 c15  cip tmeline of video b

matrix approximatio€® C = |_; Uc «V{ from singular 2

value decompositiot) V? of C. The result is illustrated in

Figure[% (middle) using rank = 5. Abusing notation we S1 i Nedo Neds cde Neds Neds

further denote the de-correlated cost matiXasC. g O 0 g  ©0 00
2) Formulation as a Shortest Path Algorithnithe only

missing step for aligning a video pair is to nd a plausible path

through its respective de-correlated cost matrix. Intuitively,

a path is a collection of consecutive frame-pairs of minimal

matching costs. Matching frame-pairs should lie on a clearfjg- 6. Given a cost matriC, we split up one video by dividing the cost

distinct path in the cost matrix. A well-studied algorithm /% 110 CYEPng Srpei o Fndng he ol shortest path

solve a shortest-path problem mjkstra's Algorithm For a we obtain a reliable matching tour for synchronizing videos.

given start- and endpoint it computes the globally optimal path

with minimum cost. We shortly outline the vanilla grid-versior

a

timeline of video

e

when applying to the cost matrig. \\\\

a) Dijkstra's algorithm.: For detecting paths we only al- B \\
low for three directions: downwards, rightwards and a diagon \\
bottom-right step basically preventing reverse playback ai N
assuming non-negative cost®. ¢; 0. Given a start-entry Ne
(s;t) and end-poinfv;w) withs vandt w the algorithm —
propagates cosfS in a dynamic programming approach with “
entries

& =0;(y =Min 6 136 1 1,65 10 (4) Diksua algonthm unaware of start. and endpoint for overiappng Stipes.

) . =Zargmin f . i1 6 5 This gives stripe-wise propagated costs for the entire video snippet (middle).
(Cd'rem)” 9 G 1.6 1 1G5 19 ( ) Our heuristic classi es between non-consistent tours-snippets éedthe

. . deviation effect) and reliable tour-snippets (green). The parts illustrated as
and in nite costs1 for not reachable frames. FoIIowmg theolue lines will be only taken into account if the do not violate the global

path backwards encoded {Ggirecy) from (v; w) gives a path consistency constraint. All images are best viewed in the electronic version.
P with lowest costs betweefs;t) and(v; w). FigureE!p shows
such a path from our augmented version.

3) Augmented Dijkstra's Algorithmtnfortunately, we nei- Dijkstra’s algorithm is applied as described frap to Si+1
ther know the start- nor end-point in contrast to the vanilldy only allowing the three mentioned directions. Each possible
version used in[[4] nor can we guarantee that there is a p®#N Pt = (St;p1iP2;::::pn; Si+1) has associatethatching
through theentire cost matrixe.g consider different sub-tours. costsde ned as
For most videos of a large collection one does not even know
if two videos match at all. We augment Dijkstra's algorithm by
processing subsequences individually with the goal to exibly
handle non-matching regions without corrupting the entirgherec(p) is equivalent to an entrg,, in the cost matrixC
path when searching for the global optimum over the entifer the frame-paip = (a;b).

X
(Py) = c(p); (6)

p2 P

matrix. Combining local tours to a global matching tourAs
The coarse cost matri€ is split along one time dimensiona robust global matching tour does not necessarily span the
into multiple overlapping column-stripeSy; Cy1;:::;Cy (See entire cost matrix and all stripes,g for detours, we reject

Figure[§) each containing 90 seconds of the video. Now, olacal stripes which cannot be connected to any neighboring
approach tries to nd a matching tour through the entire costripes with a tolerance of up to two seconds. This tolerance
matrix building on possible tours from each stripe. accounts for the fact that we currently only consider coarse
a) Local tours within stripes.:Let us consider such ainformation (each 10-th frame).

single stripeCy. Introducing an arti cial start node with zero  Further, applying Dijkstra's algorithm to each stripe indi-
costs to the left enables almost complete freedom regardivigually might generate local paths of minimum costs, which
the location of each match within one stripe. We are onbre not necessarily a matching tour — there does not have
interested in nding a matching tour from the laft, to the to be such a matching tour at all. We therefore, reject local
rightc;n in the current stripe. Further, this arti cial start nodestripes with entriegx;y) 2 Py from the local matching tour,
allows us to treat each stripe individually if an alternative frame-paip®2 f (x ";y);(x;y ")g does

For the nal extraction we remove path parts from th@&ot have signi cant higher associated costs ti@n.e. we
overlap —taking all information but the overlap— as Dijkstraimply use the thresholdp% > gc(p). This threshold might
tends to deviate (see FigJrg 7) from the correct path near the conservative but the specic choice only impacts a small
borders of the stripe. For each stripe the vanilla regularizégction of paths during exploration.



TABLE | seconds due to multiple runs of the path nding procedure
TIMINGS FOR EXTRACTING FEATURES FROM UNSEEN VIDEOSENABLING on ner Scale Thls glves a Speed_up factor Of at Ieast 300
HIGH FRAME-RATES IS ESSENTIAL ON LARGESCALE DATASETS .
compared to [[4], [[24], [[25]. So far ours is the rst ap-
approach [[24][125] (4] [[31] ours proach enabling large-scale interactive applications. See_ the
https://youtu.be/vhVsw4qoe70 for a real-time demonstration.
For processing many more videos additional search structures
might be used.

fps 0.11 3.77 15 140

All remaining frame-pairs from the global matching touB. What is the network looking for?

are considered for the generation of the next training datasef, aligning videos, the network has to distinguish between

version. relevant and irrelevant regions in the frareeg the appearance
D. Final Alignment of Videos of trafc and road lanes and the weather depend on the
moment of recording. To visualize which input information are

So far, we only considered each 10-th frame during trammgSed inside the neural network for a particular prediction, we

e e ment e 1o o0t salency maps using quidecRe-U 35, normaly
required 9 P computes the gradient information of the network output wrt.

A ¢ h onl ¢ triesGfat to the input images holding all weights xed. This indicates
coarse-lo- né approach only computes entriestbtat -, -, pixel information in the input image have large impact

nert rn(;zs?rlil:(téon_rg th?ybarlemneta;]iz; rr:atcrhimg thotu"rnln t?]enclf arss the network prediction. Compared to the vanilla ResNet-
cost ma - 1he global matching tour1s sp 0 ChUNXS Ol 4ur trained model learned to ignore irrelevant information

the same size. For each chunk, we compute all frame distan 23 traf ¢, see Figurd D. Instead it focuses on the shape of the

_ _ G
As th_e start and end point of the matc_hmg tour th|rough a.s'angrizon and vegetation of the environment. This is not possible
box is known, we directly apply vanilia Dijkstra's algorlthmby previous methods [18]. [3].[4]._[24]._[25] as they also put

W't'CIOléF fgrth@i:] m0(|:J| CSUOQ 4 of onl " fitention on passing cars and clouds as depicted in the lower
odifying the playback speed of only one video would = Figure[D.

introduce visible jumps and spurts in this video when matching
to the reference video. Consider a linear playback of a refer-
ence scene with green traf c light, while the other video has to SIFT ours
jump over the frames when waiting on red. To achieve visually
pleasing video playback, we smooth the matching tour along
both time dimensions using Kalman Iters with the additional
constraint to not revert the time line of a single video.

costs cleaned costs| cleaned costs

V. RESULTS AND EXPERIMENTS

The following results and timings are obtained on a single
workstation with an Nvidia Titan X GPU. We demonstrate
the robustness on aligning a couple of challenging scenes. To

evaluate our method despite missing ground truth, we compare g »
our convnet prediction of similarity td [24][ [25], the SIFT-a anﬂ ."’
based histogram matching frorn| [4], conducted a user study
and evaluate against a manually alignment of videos. b e I ' ‘ el AN s
A. Timings and memory consumptions

Our approach compares favorably o a Iocal-feature-baqg . 11. Although, there should be a matching tour between framasaimd

approach concerning the run time (Talpje 1) and has smathrough the entire video snippet, it is not possible to align both videos using

storage requirements (102 MB for the network weights). WheFT featuresi[4]. Our network was able to learn similar feature embeddings
ven between these videos taken in September 2012 and February 2013

conS|der|ng every 10-th frame of a smgle video with Iengtﬁl—zspectively. The cost matrix in our approach contains reasonable information

35 minutes, the embedding takes 45 seconds in total. Thismost frames.

allows us to ef ciently compute new embeddings of the entire

dataset of 260 hours content for the training procedure within Robustness and Accuracy

less than half an hour using 12 GPUs. In contrast to methods solely based on aggregating SIFT
The path detection and extraction procedure to préeatures, our method is able to even match videos captured

duce coarse paths on unseen video-pairs of 35 minutes months apart as depicted in Figure]11. Remarkably, as

each takes two seconds given the embeddings. This spifie videos for the dataset are collected over multiple months

into pairwise-distance computation (1071 ms, GPU), dé#ie network has learned to interpret scenes globally. Even

correlation (370 ms, CPU) and path detection/computatisequences where human interventions like tree-felling cause

(405 ms, CPU). Computing the nal matching tour takes @ rather different look of the same scene, the corresponding



https://youtu.be/vhVsw4qoe70

Fig. 8. Each row contains pairs of coarsely aligned videos (every 10-th frame) across different seasons, lightning, weather conditions as well as vegetation

These videos are taken from the validation set and are not used during training. Notable, the algorithm can robustly handle windscreen wipers, motion blur
and raindrops on the wind shield.

frame untrained trained
Fig. 10. The left frame was captured in November 2012 and right frame in
March 2013 after tree felling works. These kinds of differences cause high
matching costs of the found tour in our approach, but the situation is resolved
by our matching tour procedure exploiting temporal consistency.
HARRIS SIFT ours

500 tours predicted by our approach from the cost matrices
(see Figurg 14, left). Note, how the accuracy increases over
the iterations. Hence, the harvested additional training data of

higher complexity results in a higher recall of found matching
Fig. 9. The network (right) learned to ignore common content such Burs

traf ¢ or road lanes and instead focuses on striking environment information

compared to vanilla ResNet (middle). Previous methads [18], [3], [4], [24], In addition, we thoroughly annotated the videos from
[25] rely on local features, capturing irrelevant information like the white C¥igure @ for two experiments by manually tting the best
in the lower row.

visual matching frame, well knowing the shown locations and
temporal context. In a user-study we showed a single reference
) ) frame and the manually aligned frames besides several similar
videos are correctly synchronized by our approach as Wgighboring frames. The evaluation of 450 submitted results
enforce temporal consistency. from 14 participants is illustrated in Figufé 8, which reveals
To evaluate the accuracy quantitatively, we manually judgeliscordance between different participants on the same frame.
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Fig. 12. Comparison to human annotated alignment. After each iteration we
report (left) the number of found matching tours between videos and true
positives and the mis-alignment (right) against a human annotation.

Approximately, 53% agree with a tolerance of 4 frames.
This clearly demonstrates the dif culty of this task, probably
caused by changes of camera perspective, lacking temporal
information in rural scenes or unfamiliarity with the shown
locations. This might also contain effects as in Figure 10.
Second, we directly compared the frame-distance between
our annotations and the extract path of our approach. This
compares favorably to our estimated human performance as
62% of the predicted frame-pairs have a frame offset of at
most 4 frames.

D. Limitations

Despite its good performance, our approach is subject to a
number of limitations. Ignoring the high-res input might drop
discriminative small local clues, which could be solved by
attention techniques [36], [37]. Spatial Transformer Network
Layers [38] which also facilitates optical ow estimation could
account for spatial displacement between matching frames
caused by the current acquisition method. Recently proposed
methods like [39] can be included to also directly learn
spatial alignments. While we apply Kalman Itering to smooth
the matching tours, one might formulate this as a discrete
optimization problem to include the produced matching costs
by the neural network.

VI. CONCLUSION

We present a novel combination of deep neural networks
and path nding algorithms for synchronizing videos by ap-
proximating the similarity of frame-pairs based on the feature
embedding by a deep convolutional neural network. Matching
tours between two videos are determined along the resulting
frame-based similarity matrices. To improve the extraction of
the correct matching tours we propose pre-processing of these
cost matrices and a regularized version of Dijkstra's algorithm
On cost-stripes to satisfy time constraints. Our training meth d 13. Multiframe temporal alignment: After quering similar and time
relies on an iterative scheme to automatically gather n@&%mstem video snippets using the learned embeddings, the approach is able
labels completely avoiding manual annotations. The systeerobustly synchronize all found snippets to a reference video snippet.
veri es temporal consistency of predictions to create newly
labeled training data. Utilizing the transitivity of matching
tours between multiple video-pairs increases the complexity of
the input data gradually and allows us to robustly synchroniappearances. Hence, the label annotation for large video
videos months apart under different weather conditions andllections can be done in shorter time and for fewer costs.
vegetation. Learning appearance maodi cation as in [40] or a dynamic
The system opens up several exciting directions for futuversion of content blending as described in [41] are further
researche.g label-transfer between densely annotated videosxciting applications, which can benet from our learning-
frames and automatically synchronized videos with differebased approach for video synchronization.



(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

REFERENCES [21]
J. Rilegg, O. Wang, A. Smolic, and M. Gross, “Ducttake: Spatiotemporal
video compositing,” inComputer Graphics Forumvol. 32, no. 2ptl.
Wiley Online Library, 2013, pp. 51-61. [22]
A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless,
D. Salesin, and R. Szeliski, “Panoramic video textures,” AGM
Transactions on Graphics (SIGGRARHer. SIGGRAPH '05. New [23]
York, NY, USA: ACM, 2005, pp. 821-827. [Online]. Available:
http://doi.acm.org/10.1145/1186822.1073268

P. Sand and S. Teller, “Video matching ACM Trans. Graph.

vol. 23, no. 3, pp. 592-599, Aug. 2004. [Online]. Available:[24]
http://doi.acm.org/10.1145/1015706.1015765

0. Wang, C. Schroers, H. Zimmer, M. Gross, and A. Sorkine-Hornung,
“Videosnapping: Interactive synchronization of multiple video&CM
Trans. Graph, vol. 33, no. 4, pp. 77:1-77:10, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2601097.2601208 [25]
I. Masuda Mora, S. de la Puente, and X. Giro-i Nieto, “Open-ended
visual question answering,” B.S. thesis, Universitat Roliica de
Catalunya, 2016.

N. Bryan, P. Smaragdis, and G. Mysore, “Clustering and synchronizirjg6]
multi-camera video via landmark cross-correlation,”"Rroceedings of

the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSPMarch 2012, pp. 2389-2392. [27]
“Global positioning system standard sositioning service serformance
standard,” 2008.

R. Arandjelovt, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,”Piro-
ceedings of the IEEE Conference on Computer Vision and Pattej28]
Recognition (CVPR)2016.

0. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge[29]
International Journal of Computer Vision (IJCWol. 115, no. 3, pp.
211-252, 2015.

L. G. Brown, “A survey of image registration techniquesfCM
Comput. Sury.vol. 24, no. 4, pp. 325-376, 1992. [Online]. Available:
http://dblp.uni-trier.de/db/journals/csur/csur24.html#Brown92 [31]
D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithnistérnational Journal of
Computer Visionvol. 47, no. 1, p. 742, May 2002. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=64200 [32]
C. Liu, J. Yuen, and A. Torralba, “Sift ow: Dense correspondence
across scenes and its application®attern Analysis and Machine
Intelligence, IEEE Transactions owol. 33, no. 5, pp. 978-994, May
2011.

C.-W. Ngo, Y.-F. Ma, and H.-J. Zhang, “Video summarization and33]
scene detection by graph modelingircuits and Systems for Video
Technology, IEEE Transactions owol. 15, no. 2, pp. 296-305, Feb [34]
2005.

S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High dynamic
range video,”ACM Trans. Graph.vol. 22, no. 3, pp. 319-325, Jul. [35]
2003. [Online]. Available: http://doi.acm.org/10.1145/882262.882270

F. Diego, D. Ponsa, J. Serrat, and A. M. Lpez, “Video alignment
for change detection.IEEE Trans. Image Processingol. 20, no. 7,

pp. 1858-1869, 2011. [Online]. Available: http://dblp.uni-trier.de/dbi36]
journals/tip/tip20.html#DiegoPSL11

A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “The video
genome,” CoRR vol. abs/1003.5320, 2010. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr1003.html#abs- 1003-5320 [37]
F. Zhou and F. De la Torre Frade, “Canonical time warping for alignment
of human behavior,” inAdvances in Neural Information Processing
Systems (NIPSPDecember 2009. [
J.-C. Bazin and A. Sorkine-Hornung, “Actionsnapping: Motion-based
video synchronization,” ser. ECCV'16. Berlin, Heidelberg: Springer-
Verlag, 2016. (39]
C. Lei and Y.-H. Yang, “Tri-focal tensor-based multiple video
synchronization with subframe optimizationlEEE Transactions on
Image Processingvol. 15, no. 9, pp. 2473-2480, 2006. [Online].
Available: http://dblp.uni-trier.de/db/journals/tip/tip15.html#LeiY06

L. Wolf and A. Zomet, “Wide baseline matching between
unsynchronized video sequencebjternational Journal of Computer [41]
Vision, vol. 68, no. 1, 43-52, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s11263-005-4841-0

(30]

(40]

T. Tuytelaars and L. J. V. Gool, “Synchronizing video sequences,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPRR004, pp. 762—768. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.244

Y. Caspi and M. Irani, “Spatio-temporal alignment of sequend&EE
Transactions on Pattern Analysis and Machine Intelligena®. 24, pp.
1409-1424, 2002.

Y. Ukrainitz and M. Irani, “Aligning sequences and actions
by maximizing space-time correlations,” ser. ECCV'06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 538-550. [Online]. Available:
http://dx.doi.org/10.1007/11744074&2

G. D. Evangelidis and C. Bauckhage, “Ef cient and robust alignment
of unsynchronized video sequences.” IDAGM-Symposium ser.
Lecture Notes in Computer Science, R. Mester and M. Felsberg,
Eds., vol. 6835. Springer, 2011, pp. 286-295. [Online]. Available:
http://dblp.uni-trier.de/db/conf/dagm/dagm2011.html#EvangelidisB11
——, “Efcient subframe video alignment using short descriptors.”
IEEE Trans. Pattern Anal. Mach. Intellvol. 35, no. 10, pp. 2371-
2386, 2013. [Online]. Available: http://dblp.uni-trier.de/db/journals/
pami/pami35.html#EvangelidisB13

J. Bromley, I. Guyon, Y. Lecun, E. Sckinger, and R. Shah, “Signature
veri cation using a "siamese” time delay neural network,” Auvances

in Neural Information Processing Systems (NIPE)94.

S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric dis-
criminatively, with application to face veri cation.” iProceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
IEEE Computer Society, 2005, pp. 539-546. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2005- 1.html#ChopraHL05

R. R. Varior, M. Haloi, and G. Wang, “Gated siamese convolutional
neural network architecture for human re-identi catiolCoRR vol.
abs/1607.08378, 2016. [Online]. Available: http:/dblp.uni-trier.de/db/
journals/corr/corrl607.html#VariorHW16

S. Zagoruyko and N. Komodakis, “Learning to compare image patches
via convolutional neural networks,” iRroceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVBRjye 2015.

A. Torii, R. Arandjelovt, J. Sivic, M. Okutomi, and T. Pajdla, “24/7
place recognition by view synthesis,” VPR 2015.

M. Douze, J. Revaud, J. Verbeek, Hgdu, and C. Schmid, “Circulant
temporal encoding for video retrieval and temporal alignment,”
International Journal of Computer Visior2016. [Online]. Available:
https://hal.inria.fr/hal-01162603

Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker,
I. Guyon, U. Muller, E. Sackinger, P. Simaedal, “Learning algorithms

for classication: A comparison on handwritten digit recognition,”
Neural networks: the statistical mechanics perspectiod 261, p. 276,
1995.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,”arXiv preprint arXiv:1512.033852015.

E. Hoffer and N. Ailon, “Deep metric learning using triplet
network.” CoRR vol. abs/1412.6622, 2014. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corrl412.html#HofferA14

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” irarXiv:1412.6806,
also appeared at ICLR 2015 Workshop Tra2R15. [Online]. Available:
http://arxiv.org/abs/1412.6806

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,arXiv preprint arXiv:1502.03044
2015.

Z. Yang, X. He, J. Gao, L. Deng, and A. J. Smola, “Stacked attention
networks for image question answering;bRR vol. abs/1511.02274,
2015. [Online]. Available: http://arxiv.org/abs/1511.02274

38] M. Jaderberg, K. Simonyan, A. Zissermanh al,, “Spatial transformer

networks,” in Advances in Neural Information Processing Systems
(NIPS) 2015, pp. 2008-2016.

A. Kanazawa, D. W. Jacobs, and M. Chandraker, “Warpnet: Weakly
supervised matching for single-view reconstruction,” Pmoceedings

of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) June 2016.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networksgrxiv, 2016.

R. Martin-Brualla, D. Gallup, and S. M. Seitz, “Time-lapse mining from
internet photos,”ACM Trans. Graph. vol. 34, no. 4, pp. 62:1-62:8,
Jul. 2015. [Online]. Available: http://doi.acm.org/10.1145/2766903



	Introduction
	Related Work
	Dataset
	Unsupervised Curriculum Learning
	Learning Step
	Label Generating Step
	Finding Matching Tours
	Pre-Processing: De-correlate Costs
	Formulation as a Shortest Path Algorithm
	Augmented Dijkstra's Algorithm

	Final Alignment of Videos

	Results and Experiments
	Timings and memory consumptions
	What is the network looking for?
	Robustness and Accuracy
	Limitations

	Conclusion

