
Learning Robust Video Synchronization

without Annotations

Patrick Wieschollek∗†, Ido Freeman∗ and Hendrik P.A. Lensch∗

∗University of Tübingen
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Abstract—Aligning video sequences is a fundamental yet
still unsolved component for a broad range of applications in
computer graphics and vision. Most classical image processing
methods cannot be directly applied to related video problems due
to the high amount of underlying data and their limit to small
changes in appearance. We present a scalable and robust method
for computing a non-linear temporal video alignment. The
approach autonomously manages its training data for learning
a meaningful representation in an iterative procedure each time
increasing its own knowledge. It leverages on the nature of the
videos themselves to remove the need for manually created labels.
While previous alignment methods similarly consider weather
conditions, season and illumination, our approach is able to align
videos from data recorded months apart.

I. INTRODUCTION

Understanding and assessing the current situation around us

in a single glance is necessary to interact with the world as we

know it. Looking at Figure 1 within few tens of milliseconds,

we can verify that the highlighted frames show the same scene

although they are recorded at different times, having different

illumination, motion blur and seasonal effects. For this task,

we are focusing with ease on useful traits like the location of

the houses or the shape of the street and are masking irrelevant

features such as traffic or the actual road condition. From our

experience we are familiar with all effects that might change

the current appearance and understand the global context.

For computing a temporal video alignment (synchroniza-

tion), i.e. a dense frame-to-frame mapping for each time

step in the involved videos with consistency along the time

dimension, classical approaches are based on matching local

descriptors [1], [2], [3], [4]. While they allow for accurate

video alignments, they are limited to video pairs of short

video clips sharing very similar appearance. However, longer

videos capturing the same content at different times might

look completely different besides additional challenges such

as ego- and object-motion or changes of the view angle and

illumination.

Though data-driven approaches like deep convolutional neu-

ral networks have proven excellent performance and capabil-

ities of global scene understanding [5], they usually require

a large amount of high-quality labeled training data. One

way to automate the labeling process would be to record

synchronization signals such as Longitudinal Time Codes,

genlock, GPS data or a landmark-based audio fingerprint-

ing [6] during acquisition. Solutions based on this kind of

additional data are as accurate as the device which registered

the data. Besides its limitation to out-door scenes, GPS has a

common precision of three meters [7]. While minor alignment

errors would not be visible in vanilla image alignment, any

such non-frame accurate alignment would become apparent

during simultaneous video playback.

In many real-world scenarios, these explicit synchronization

signals are not available as most consumer cameras only

encode the creation date of the video file within the meta-data.

Directly applying learning based approaches like [8] to learn

the alignment is not possible in this case. Producing a dense

labeling by manual effort is not feasible either1. Our dataset

consists of 28 million frames. Note, the ILSVRC challenge [9]

is based on 1.4 million labeled images only. Particularly, in

our setting, we deal with unstructured video content without

any explicit knowledge about which frames or entire videos

do match or not.

To overcome these problems, we propose a novel learning-

based approach:

– Section III introduces a new challenging dataset for

video-alignment covering rural scenes as well as city

scenes across a year under different appearances.

– In Section IV we propose a novel training protocol for

training a neural network to match frames from different

videos of the same scene without any annotation.

– Section IV-C presents a novel method for robust identi-

fication and computation of matching tours for partially

overlapping video pairs, which is able to automatically

detect start and end points of the matching tour.

II. RELATED WORK

The process of video alignment holds a natural relation to

image alignment which was addressed by several studies [10],

e.g. using stereo correspondence estimation [11] or robust

pixel descriptors [12]. Algorithms like video stitching for

creating panoramic videos [2], automatic summarization of

videos [13], HDR video generation [14], vehicle detection

for advanced driver assistance systems [15] and video-copy

detection [16] among others are heavily dependent on such

a robust and accurate temporal alignment of video-frames

between multiple videos.

Basic video alignment is commonly used in the field of

human action retrieval or surveillance motion capture. Here,

finding similarities of human actions in videos are based on

1Thoroughly aligning a video pair of 8 min length by hand takes 41min.



Fig. 1. Given a pair of videos (top) our network has learned to robustly embed each frame (left) in a high dimensional feature space (middle) independently
from appearance changes caused by weather, traffic or seasonal effects. Given these feature vectors, the algorithm retrieves the most plausible frame mapping
for a synchronous playback (dark path, right). Our approach autonomously learned to compare these frames during training without any human annotation or
labels.

dynamic time warping of various sensor features to track the

human skeleton [17]. Bazin et al. introduced ActionSnapping

[18] which focuses on synchronizing actions performed by

humans such as weightlifting, baseball pitching or dancing

assuming a static background scene and frontal views.

Most approaches for spatio-temporal video alignment [19],

[20], [21], [22], [23] assume a linear temporal correspondence,

i.e. a constant time shift between successive frames or a

constant change in playback speed for one video. Sand and

Teller [3] compute a matching-likelihood of 3D motion to

match videos. A non-linear solution was proposed by Wang et

al. [4] based on a matching histogram of SIFT features using

nearest neighbour search. Here, the search space increases with

the length of the video sequence. In terms of application the

most similar work to ours is from Evangelidis et al. [24], [25],

which allows for sub-frame accurate alignments of at most one

minute video snippets under negligible appearance changes on

rather simple street scenes. Another related task is to recognize

places from different view angles. A data-driven version of

VLAD descriptors by Arandjelovic et al. [8] demonstrates the

capability of neural networks to detect specific locations. Com-

pared to place recognition video alignment however requires

a much finer resolution. Figure 2 illustrates typical examples

of frame-pairs from different datasets which are considered as

similar for the specific task.

Learning similarities by training neural networks was done

previously for very specific applications such as signature

verification [26], face recognition [27], [28] and comparing

image patches for depth estimation [29]. They rely on datasets

with extensive human annotations and reliable ground-truth

data.

III. DATASET

Our underlying dataset comprises of 602 full-HD, 30FPS

videos (1.8 TB of raw data) capturing 260 hours of com-

muters’ car journeys on partially overlapping routes between

April 2012 and March 2013 and spanning over approximately

16, 000km. The videos were captured using a GoPro Hero 2

a b
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Fig. 2. Comparing the data sets of related work. Each pair shows a typical
matching frame-pair. a) [24] only shows small changes in appearance and
perspective, b) [30] has a totally different view angles and c) [31] requires
only a constant time shift for alignment. For our dataset d), an alignment
method has to handle a different appearance and produce a playback with
non-linear speed.

camera mounted on the dashboard before every journey with-

out special adjustments. However, the view angle does not

feature differences as large as in place recognition tasks [8].

The acquired videos feature both rural landscapes and urban

scenes under varying traffic conditions such as temporary road

works, rush hour, diverse weather conditions, e.g., snowfall,

rain, and seasonal environment appearance, for example ef-

fects of vegetation as well as different daytime illumination

(see Figure 2d) and the supplemental video https://youtu.be/

vhVsw4qoe70).

Most videos show journeys between the same two cities but

still have a variation in start and end locations and the actual

roads driven. The temporal alignment of the videos thus poses

a further challenge when trying to match stationary situations

like waiting in traffic during rush hour with a video showing

little traffic. This is different to linear video alignment tasks

like copy-detection described in [31].

The enormous range of possible variations in the video con-

tent which also suffers from a noisy acquisition (e.g. different

viewing angles, wipers, raindrops, camera transformation, etc.)

requires some understanding of context of the entire scene

rather than a simple local feature matching like histogram

based methods [4], [18], [25]. Moreover, the videos might

show interrupted content, e.g. when the lens is cleaned or

remounted during recording.

https://youtu.be/vhVsw4qoe70
https://youtu.be/vhVsw4qoe70


IV. UNSUPERVISED CURRICULUM LEARNING

We propose a framework to learn descriptors for all frames

such that the Euclidean distance represents a similarity metric

between captured scenes or locations. By properly designing

the training protocol this generic approach features fast match-

ing computation, robustness against seasonal effects and it

does not rely on pre-existing labels for training.

The similarity metric can be exploited to robustly synchro-

nize videos as will be explained in Section IV-C. While first

establishing the procedure to align partially overlapping video

pairs (X,Y ) it is straightforward to extend it to multiple

videos in a collection (see Figure 13).

a) Curriculum Learning.: The algorithm alternates be-

tween two steps: the learning step and the label generation

step. In the learning step, we assume given labels ℓ and

train a neural network to produce meaningful descriptors

for a similarity metric δ. The label-generation is based on

the current version of the trained network combined with

tour matching (Section IV-C) to exploit temporal consistency.

Given the learned similarity metric δ novel, potentially more

reliable labels are produced, replacing the old ones.

Over multiple iterations, more and more sophisticated and

more informative training data is generated. None of these

steps requires any human annotation nor recorded GPS signals.

A. Learning Step

In the learning step we want to learn an embedding of

frames to establish a similarity measure between individual

frames (x, y). Relying on the currently available labels from

the training data we train a convolutional neural network

(CNN) [32] to predict a high-dimensional descriptor Φi for

each frame i such that the Euclidean distance

(x, y) 7→ δ(x, y) := ‖Φx − Φy‖2 (1)

is small when the frames are similar and vice versa. We use

the standard ResNet-50 architecture [33] and add a projection

from the pool5 layer to learn the 1000-dimensional descriptors

Φi. As CNNs tend to learn edge filters in the first layers,

we use a pre-trained ResNet version for object recognition as

initialization.

In order to efficiently train the concept of similarity the

triplet neural network approach [34] with weight-sharing is

used, which generalizes well to unseen examples. It requires

labels ℓ = (a, p, n) in the form of triplets of frames: for an

anchor frame a the label needs one similar or positive frame

p and one negative/dissimilar frame n. The similarity metric δ
(Eq. (1)) is enforced by minimizing the triplet loss by Hoffer

et al. [34]

L(a, p, n) =
[

m+ ‖Φa − Φp‖
2

2
− ‖Φa − Φn‖

2

2

]

+

(2)

for some margin m ∈ R. The first term penalizes embeddings

of similar frame-pairs (a, p) that are too far away from

each other in the high dimensional feature space. The latter

penalizes embeddings of negative (non-matching) frame-pairs

(a, n) if they are too close to each other (closer than some
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Fig. 3. Let (a, p, n) be a frame-triplet with descriptors (Φa,Φp,Φn)
produced by the same CNN. During training, the CNN is optimized to embed
positive frames p close to the anchor point a, while negative frames n are
pulled away from the anchor point if the distance is smaller than a margin
m.

margin m – Figure 3). In practice, we constrain this embedding

to live on the d-dimensional hypersphere, i.e. ‖Φi‖2 = 1 and

set m to 0.5.

B. Label Generating Step

While the learning step is rather straight-forward the chal-

lenge lies in automatically generating appropriate frame-triplet

labels as training data. This label-generating step automatically

harvests new training data for subsequent learning steps by

explicitly exploiting the coherence in videos and by proposing

and judging video alignments based on current knowledge.

The goal is to gather more and more informative training data

in each iteration by successively increasing the difficulty, i.e. to

find positive frame pairs which show the same scene location

but with potentially different appearance as well as finding

negative pairs which currently are assigned rather similar

embeddings. This is achieved in three waves:

Iteration 0: intra-video sampling of nearby frames for initial

training

Iteration 1+: inter-video sampling of frames from matching

tours

Iteration 2+: transitive inter-video sampling of frames from

matching tours by propagation of alignments to

other videos

After each iteration of the label-generating step we re-

trained the neural network in the learning step, alternating

between training and label generation.

a) Iteration 0.: In Iteration 0 one has to solve the

dilemma of generating reliable labels ℓ without having any

trained network for proposing distances δ. Instead we rely on

the inherent coherence within the same video. Any arbitrary

frame-pair which is at most 15 frames apart serves as positive

sample (a, p). Any other random frame sufficiently far away

from a is regarded as a negative frame n.

b) Iteration 1+.: After the first iteration the network is

trained and can now produce features Φi for each frame i
which is carried out for every tenth frame of all videos in the

data set. One can use the proposed Φi for approximating the

pair-wise similarity, but since the network is not fully trained
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Fig. 4. Development of the cost matrix of the same video pair throughout
the iterative training process. Dark entries represent frame-pairs that are
considered similar having a small distance in the feature space. Note how
the path (red) of similar frame-pairs becomes more distinct. Large coherent
regions along the path indicate stand-still, e.g. waiting at a traffic light. We
further highlight matching frames a, p and hard negative n.

yet it is essential to judge whether we can rely on a particular

frame encoding or not.

The criteria for accepting a positive frame pair or detecting

a negative one in this step is based on temporal coherence by

potential matching tours between distinct videos (X,Y ). A

cost matrix

C = (δ(Φx,Φy))x,y, x ∈ X, y ∈ Y (3)

can be computed containing all coarse pair-wise distances of

frames. Corresponding frames should have a small distance.

Though this might not always be the case in early iterations,

it might already be possible to detect a matching tour as

explained in Section IV-C, i.e. to find an optimal path through

the cost matrix (see Figure 4). If the path is sufficiently distinct

the path will synchronize both videos correctly and all nodes

on the path resemble positive pairs with row a and column p,

independent of the currently proposed measure δ(a, p). Some

new positive pairs might be found this way giving hints on

how to optimize the embedding in the next training phase.

Similarly, we can harvest challenging negative pairs (a, n) by

just choosing a column n sufficiently far away from the path.

Most informative will be such a pair if δ(a, n) is currently

rather small, indicating similarity though the frames clearly

should be rated distinct.

Though we might not find all possible paths between

all videos yet, the resulting labels ℓ(a, p, n) will be more

informative than in the previous iteration as the appearance

between two videos will more likely be different even for

matching frames. The process is visualized in Figure 4 where

Fig. 5. Computed similarity matrix from the first iteration in our training
process (left). As they contain highly correlated entries, directly finding a
matching tour would fail. After the de-correlation of the cost matrix (middle)
finding a path (right) is significantly more robust.

the correct matching path becomes more obvious and easier

to detect throughout the iterative training.

c) Iteration 2+.: Computing a cost matrix for each single

video pair is inefficient. Instead, we propagate detected match-

ing tours transitively to other pairs. Based on the property of

“X and Y have a matching tour”, denoted as X ∼ Y , is

a equivalence relation (meeting the requirements reflexivity,

symmetry and transitivity), we propose a transitive sampling.

In fact, our entire dataset can be split into distinct equivalent

classes V/ ∼ under the relation X ∼ V when videos X
and V share a part of the same tour. Hence for any two

videos X and Y ∈ V/ ∼ we already know the existence of a

matching tour X ∼ V and V ∼ Y . Transitivity also directly

gives us a matching tour for X ∼ Y if both share some

overlap. This allows us to sparsely sample video-pairs and

propagate matching frames across videos. Using a tree-based

index structure reduces the complexity to O(n log n) when

synchronizing n videos (see Figure 13). Through transitivity

one can establish matching tours which so far could not be

detected using the previously trained embeddings. With this

iterative process we can quickly generate a huge number of

challenging and informative training triplets ℓ(a, p, n) even for

videos which have been captured months apart.

Starting in iteration 2 we mix the obtained training examples

from inter-video sampling (iteration 1+) and transitive inter-

video sampling (iteration 2+).

C. Finding Matching Tours

We will now describe how to find a matching tour given

a cost matrix C. The entire iterative scheme is based on

robustly detecting false-positives from the network prediction

and producing complex training data in a reliable way.

1) Pre-Processing: De-correlate Costs: Particularly in the

early iterations, the similarity matrices C produced by the

CNN contain a lot of false predictions, since it is not yet fully

adapted to the task. These errors exhibit a low-rank structure,

because any frame that is not correctly embedded is likely

to corrupt an entire column (or row) of the similarity matrix

(left of Figure 5). Additionally, some of the pairs are, indeed

rather similar although we would like to treat them as different.

For example, many journeys through rural areas with little

information but crop fields on both sides of the road appear

extremely similar. As a pre-processing to the tour extraction



we remove those correlation effects by subtracting a low-rank

matrix approximation C ′ ← C−
∑r

k=1
UkΣkV

⋆
k from singular

value decomposition UΣV ⋆ of C. The result is illustrated in

Figure 5 (middle) using rank r = 5. Abusing notation we

further denote the de-correlated cost matrix C ′ as C.

2) Formulation as a Shortest Path Algorithm: The only

missing step for aligning a video pair is to find a plausible path

through its respective de-correlated cost matrix. Intuitively,

a path is a collection of consecutive frame-pairs of minimal

matching costs. Matching frame-pairs should lie on a clearly

distinct path in the cost matrix. A well-studied algorithm to

solve a shortest-path problem is Dijkstra’s Algorithm. For a

given start- and endpoint it computes the globally optimal path

with minimum cost. We shortly outline the vanilla grid-version

when applying to the cost matrix C.

a) Dijkstra’s algorithm.: For detecting paths we only al-

low for three directions: downwards, rightwards and a diagonal

bottom-right step basically preventing reverse playback and

assuming non-negative costs, i.e. cij ≥ 0. Given a start-entry

(s, t) and end-point (v, w) with s ≤ v and t ≤ w the algorithm

propagates costs C̃ in a dynamic programming approach with

entries

c̃s,t = 0, (c̃)i,j = min {c̃i−1,j , c̃i−1,j−1, c̃i,j−1} (4)

(cdirect)i,j = argmin {c̃i−1,j , c̃i−1,j−1, c̃i,j−1} (5)

and infinite costs ∞ for not reachable frames. Following the

path backwards encoded in (cdirect) from (v, w) gives a path

P with lowest costs between (s, t) and (v, w). Figure 5 shows

such a path from our augmented version.

3) Augmented Dijkstra’s Algorithm: Unfortunately, we nei-

ther know the start- nor end-point in contrast to the vanilla

version used in [4] nor can we guarantee that there is a path

through the entire cost matrix, e.g. consider different sub-tours.

For most videos of a large collection one does not even know

if two videos match at all. We augment Dijkstra’s algorithm by

processing subsequences individually with the goal to flexibly

handle non-matching regions without corrupting the entire

path when searching for the global optimum over the entire

matrix.

The coarse cost matrix C is split along one time dimension

into multiple overlapping column-stripes C0, C1, . . . , Cn (see

Figure 6) each containing 90 seconds of the video. Now, our

approach tries to find a matching tour through the entire cost

matrix building on possible tours from each stripe.

a) Local tours within stripes.: Let us consider such a

single stripe Ck. Introducing an artificial start node with zero

costs to the left enables almost complete freedom regarding

the location of each match within one stripe. We are only

interested in finding a matching tour from the left ci,0 to the

right cj,N in the current stripe. Further, this artificial start node

allows us to treat each stripe individually

For the final extraction we remove path parts from the

overlap –taking all information but the overlap– as Dijkstra

tends to deviate (see Figure 7) from the correct path near the

borders of the stripe. For each stripe the vanilla regularized
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Fig. 6. Given a cost matrix C, we split up one video by dividing the cost
matrix into overlapping stripes C0, C1, . . .. Finding the local shortest path in
each stripe independently and testing for plausibility in the overlap region,
we obtain a reliable matching tour for synchronizing videos.

Ci

Fig. 7. For any decorrelated cost matrix C (left), we applied our augmented
Dijkstra’s algorithm unaware of start- and endpoint for overlapping stripes.
This gives stripe-wise propagated costs for the entire video snippet (middle).
Our heuristic classifies between non-consistent tours-snippets (red, e.g. the
deviation effect) and reliable tour-snippets (green). The parts illustrated as
blue lines will be only taken into account if the do not violate the global
consistency constraint. All images are best viewed in the electronic version.

Dijkstra’s algorithm is applied as described from St to St+1

by only allowing the three mentioned directions. Each possible

path Pt = (St, p1, p2, . . . , pn, St+1) has associated matching

costs defined as

π(Pk) =
∑

p∈Pk

c(p), (6)

where c(p) is equivalent to an entry cab in the cost matrix C
for the frame-pair p = (a, b).

Combining local tours to a global matching tour.: As

a robust global matching tour does not necessarily span the

entire cost matrix and all stripes, e.g. for detours, we reject

local stripes which cannot be connected to any neighboring

stripes with a tolerance of up to two seconds. This tolerance

accounts for the fact that we currently only consider coarse

information (each 10-th frame).

Further, applying Dijkstra’s algorithm to each stripe indi-

vidually might generate local paths of minimum costs, which

are not necessarily a matching tour – there does not have

to be such a matching tour at all. We therefore, reject local

stripes with entries (x, y) ∈ Pk from the local matching tour,

if an alternative frame-pair p′ ∈ {(x± ε, y), (x, y ± ε)} does

not have significant higher associated costs than p, i.e. we

simply use the threshold c(p′) > 6

5
c(p). This threshold might

be conservative but the specific choice only impacts a small

fraction of paths during exploration.



TABLE I
TIMINGS FOR EXTRACTING FEATURES FROM UNSEEN VIDEOS. ENABLING

HIGH FRAME-RATES IS ESSENTIAL ON LARGE-SCALE DATASETS.

approach [24], [25] [4] [31] ours

fps 0.11 3.77 15 140

All remaining frame-pairs from the global matching tour

are considered for the generation of the next training dataset

version.

D. Final Alignment of Videos

So far, we only considered each 10-th frame during training.

In order to prevent visual miss-alignment due to interpolation

artifacts in the final alignment the full temporal resolution is

required.

A coarse-to-fine approach only computes entries of C̄ at

finer resolution if they are near a matching tour in the coarse

cost matrix C. The global matching tour is split into chunks of

the same size. For each chunk, we compute all frame distances.

As the start and end point of the matching tour through a single

box is known, we directly apply vanilla Dijkstra’s algorithm

without further modification.

Modifying the playback speed of only one video would

introduce visible jumps and spurts in this video when matching

to the reference video. Consider a linear playback of a refer-

ence scene with green traffic light, while the other video has to

jump over the frames when waiting on red. To achieve visually

pleasing video playback, we smooth the matching tour along

both time dimensions using Kalman filters with the additional

constraint to not revert the time line of a single video.

V. RESULTS AND EXPERIMENTS

The following results and timings are obtained on a single

workstation with an Nvidia Titan X GPU. We demonstrate

the robustness on aligning a couple of challenging scenes. To

evaluate our method despite missing ground truth, we compare

our convnet prediction of similarity to [24], [25], the SIFT-

based histogram matching from [4], conducted a user study

and evaluate against a manually alignment of videos.

A. Timings and memory consumptions

Our approach compares favorably to a local-feature-based

approach concerning the run time (Table I) and has small

storage requirements (102 MB for the network weights). When

considering every 10-th frame of a single video with length

35 minutes, the embedding takes 45 seconds in total. This

allows us to efficiently compute new embeddings of the entire

dataset of 260 hours content for the training procedure within

less than half an hour using 12 GPUs.

The path detection and extraction procedure to pro-

duce coarse paths on unseen video-pairs of 35 minutes

each takes two seconds given the embeddings. This splits

into pairwise-distance computation (1071 ms, GPU), de-

correlation (370 ms, CPU) and path detection/computation

(405 ms, CPU). Computing the final matching tour takes 6

seconds due to multiple runs of the path finding procedure

on finer scale. This gives a speed-up factor of at least 300

compared to [4], [24], [25]. So far ours is the first ap-

proach enabling large-scale interactive applications. See the

https://youtu.be/vhVsw4qoe70 for a real-time demonstration.

For processing many more videos additional search structures

might be used.

B. What is the network looking for?

For aligning videos, the network has to distinguish between

relevant and irrelevant regions in the frame, e.g. the appearance

of traffic and road lanes and the weather depend on the

moment of recording. To visualize which input information are

used inside the neural network for a particular prediction, we

compute saliency maps using guided-ReLU [35]. Informally, it

computes the gradient information of the network output wrt.

to the input images holding all weights fixed. This indicates

which pixel information in the input image have large impact

on the network prediction. Compared to the vanilla ResNet-

50 our trained model learned to ignore irrelevant information

like traffic, see Figure 9. Instead it focuses on the shape of the

horizon and vegetation of the environment. This is not possible

by previous methods [18], [3], [4], [24], [25] as they also put

attention on passing cars and clouds as depicted in the lower

row of Figure 9.

SIFT

costs cleaned costs

ours

cleaned costs

a

b

Fig. 11. Although, there should be a matching tour between frames in a and
b through the entire video snippet, it is not possible to align both videos using
SIFT features [4]. Our network was able to learn similar feature embeddings
even between these videos taken in September 2012 and February 2013
respectively. The cost matrix in our approach contains reasonable information
for most frames.

C. Robustness and Accuracy

In contrast to methods solely based on aggregating SIFT

features, our method is able to even match videos captured

five months apart as depicted in Figure 11. Remarkably, as

the videos for the dataset are collected over multiple months

the network has learned to interpret scenes globally. Even

sequences where human interventions like tree-felling cause

a rather different look of the same scene, the corresponding

https://youtu.be/vhVsw4qoe70


Fig. 8. Each row contains pairs of coarsely aligned videos (every 10-th frame) across different seasons, lightning, weather conditions as well as vegetation.
These videos are taken from the validation set and are not used during training. Notable, the algorithm can robustly handle windscreen wipers, motion blur
and raindrops on the wind shield.

frame untrained trained

HARRIS SIFT ours

Fig. 9. The network (right) learned to ignore common content such as
traffic or road lanes and instead focuses on striking environment information
compared to vanilla ResNet (middle). Previous methods [18], [3], [4], [24],
[25] rely on local features, capturing irrelevant information like the white car
in the lower row.

videos are correctly synchronized by our approach as we

enforce temporal consistency.

To evaluate the accuracy quantitatively, we manually judged

Fig. 10. The left frame was captured in November 2012 and right frame in
March 2013 after tree felling works. These kinds of differences cause high
matching costs of the found tour in our approach, but the situation is resolved
by our matching tour procedure exploiting temporal consistency.

500 tours predicted by our approach from the cost matrices

(see Figure 4, left). Note, how the accuracy increases over

the iterations. Hence, the harvested additional training data of

higher complexity results in a higher recall of found matching

tours.

In addition, we thoroughly annotated the videos from

Figure 8 for two experiments by manually fitting the best

visual matching frame, well knowing the shown locations and

temporal context. In a user-study we showed a single reference

frame and the manually aligned frames besides several similar

neighboring frames. The evaluation of 450 submitted results

from 14 participants is illustrated in Figure 8, which reveals

discordance between different participants on the same frame.
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Fig. 12. Comparison to human annotated alignment. After each iteration we
report (left) the number of found matching tours between videos and true
positives and the mis-alignment (right) against a human annotation.

Approximately, 53% agree with a tolerance of 4 frames.

This clearly demonstrates the difficulty of this task, probably

caused by changes of camera perspective, lacking temporal

information in rural scenes or unfamiliarity with the shown

locations. This might also contain effects as in Figure 10.

Second, we directly compared the frame-distance between

our annotations and the extract path of our approach. This

compares favorably to our estimated human performance as

62% of the predicted frame-pairs have a frame offset of at

most 4 frames.

D. Limitations

Despite its good performance, our approach is subject to a

number of limitations. Ignoring the high-res input might drop

discriminative small local clues, which could be solved by

attention techniques [36], [37]. Spatial Transformer Network

Layers [38] which also facilitates optical flow estimation could

account for spatial displacement between matching frames

caused by the current acquisition method. Recently proposed

methods like [39] can be included to also directly learn

spatial alignments. While we apply Kalman filtering to smooth

the matching tours, one might formulate this as a discrete

optimization problem to include the produced matching costs

by the neural network.

VI. CONCLUSION

We present a novel combination of deep neural networks

and path finding algorithms for synchronizing videos by ap-

proximating the similarity of frame-pairs based on the feature

embedding by a deep convolutional neural network. Matching

tours between two videos are determined along the resulting

frame-based similarity matrices. To improve the extraction of

the correct matching tours we propose pre-processing of these

cost matrices and a regularized version of Dijkstra’s algorithm

on cost-stripes to satisfy time constraints. Our training method

relies on an iterative scheme to automatically gather new

labels completely avoiding manual annotations. The system

verifies temporal consistency of predictions to create newly

labeled training data. Utilizing the transitivity of matching

tours between multiple video-pairs increases the complexity of

the input data gradually and allows us to robustly synchronize

videos months apart under different weather conditions and

vegetation.

The system opens up several exciting directions for future

research, e.g. label-transfer between densely annotated videos-

frames and automatically synchronized videos with different

Fig. 13. Multiframe temporal alignment: After quering similar and time
consistent video snippets using the learned embeddings, the approach is able
to robustly synchronize all found snippets to a reference video snippet.

appearances. Hence, the label annotation for large video

collections can be done in shorter time and for fewer costs.

Learning appearance modification as in [40] or a dynamic

version of content blending as described in [41] are further

exciting applications, which can benefit from our learning-

based approach for video synchronization.
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