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Abstract—Aligning video sequences is a fundamental yet
still unsolved component for a broad range of applications in
computer graphics and vision. Most classical image processing
methods cannot be directly applied to related video problems due
to the high amount of underlying data and their limit to small
changes in appearance. We present a scalable and robust method
for computing a non-linear temporal video alignment. The
approach autonomously manages its training data for learning
a meaningful representation in an iterative procedure each time
increasing its own knowledge. It leverages on the nature of the
videos themselves to remove the need for manually created labels.
While previous alignment methods similarly consider weather
conditions, season and illumination, our approach is able to align
videos from data recorded months apart.

I. I NTRODUCTION

Understanding and assessing the current situation around us
in a single glance is necessary to interact with the world as we
know it. Looking at Figure 1 within few tens of milliseconds,
we can verify that the highlighted frames show the same scene
although they are recorded at different times, having different
illumination, motion blur and seasonal effects. For this task,
we are focusing with ease on useful traits like the location of
the houses or the shape of the street and are masking irrelevant
features such as traf�c or the actual road condition. From our
experience we are familiar with all effects that might change
the current appearance and understand the global context.

For computing a temporalvideo alignment(synchroniza-
tion), i.e. a dense frame-to-frame mapping for each time
step in the involved videos with consistency along the time
dimension, classical approaches are based on matching local
descriptors [1], [2], [3], [4]. While they allow for accurate
video alignments, they are limited to video pairs of short
video clips sharing very similar appearance. However, longer
videos capturing the same content at different times might
look completely different besides additional challenges such
as ego- and object-motion or changes of the view angle and
illumination.

Though data-driven approaches like deep convolutional neu-
ral networks have proven excellent performance and capabil-
ities of global scene understanding [5], they usually require
a large amount of high-quality labeled training data. One
way to automate the labeling process would be to record
synchronization signals such as Longitudinal Time Codes,
genlock, GPS data or a landmark-based audio �ngerprint-
ing [6] during acquisition. Solutions based on this kind of
additional data are as accurate as the device which registered

the data. Besides its limitation to out-door scenes, GPS has a
common precision of three meters [7]. While minor alignment
errors would not be visible in vanilla image alignment, any
such non-frame accurate alignment would become apparent
during simultaneous video playback.

In many real-world scenarios, these explicit synchronization
signals are not available as most consumer cameras only
encode the creation date of the video �le within the meta-data.
Directly applying learning based approaches like [8] to learn
the alignment is not possible in this case. Producing a dense
labeling by manual effort is not feasible either1. Our dataset
consists of 28 million frames. Note, the ILSVRC challenge [9]
is based on 1.4 millionlabeled images only. Particularly, in
our setting, we deal with unstructured video contentwithout
any explicit knowledge about which frames or entire videos
do match or not.

To overcome these problems, we propose a novel learning-
based approach:

– Section III introduces a new challenging dataset for
video-alignment covering rural scenes as well as city
scenes across a year under different appearances.

– In Section IV we propose a novel training protocol for
training a neural network to match frames from different
videos of the same scenewithout any annotation.

– Section IV-C presents a novel method for robust identi-
�cation and computation of matching tours for partially
overlapping video pairs, which is able to automatically
detect start and end points of the matching tour.

II. RELATED WORK

The process of video alignment holds a natural relation to
image alignment which was addressed by several studies [10],
e.g. using stereo correspondence estimation [11] or robust
pixel descriptors [12]. Algorithms like video stitching for
creating panoramic videos [2], automatic summarization of
videos [13], HDR video generation [14], vehicle detection
for advanced driver assistance systems [15] and video-copy
detection [16] among others are heavily dependent on such
a robust and accurate temporal alignment of video-frames
between multiple videos.

Basic video alignment is commonly used in the �eld of
human action retrieval or surveillance motion capture. Here,
�nding similarities of human actions in videos are based on

1Thoroughly aligning a video pair of 8 min length by hand takes 41min.



Fig. 1. Given a pair of videos (top) our network has learned to robustly embed each frame (left) in a high dimensional feature space (middle) independently
from appearance changes caused by weather, traf�c or seasonal effects. Given these feature vectors, the algorithm retrieves the most plausible frame mapping
for a synchronous playback (dark path, right). Our approach autonomously learned to compare these frames during trainingwithout any human annotation or
labels.

dynamic time warping of various sensor features to track the
human skeleton [17]. Bazinet al. introduced ActionSnapping
[18] which focuses on synchronizing actions performed by
humans such as weightlifting, baseball pitching or dancing
assuming a static background scene and frontal views.

Most approaches for spatio-temporal video alignment [19],
[20], [21], [22], [23] assume a linear temporal correspondence,
i.e. a constant time shift between successive frames or a
constant change in playback speed for one video. Sand and
Teller [3] compute a matching-likelihood of 3D motion to
match videos. A non-linear solution was proposed by Wanget
al. [4] based on a matching histogram of SIFT features using
nearest neighbour search. Here, the search space increases with
the length of the video sequence. In terms of application the
most similar work to ours is from Evangelidiset al. [24], [25],
which allows for sub-frame accurate alignments of at most one
minute video snippets under negligible appearance changes on
rather simple street scenes. Another related task is to recognize
places from different view angles. A data-driven version of
VLAD descriptors by Arandjelovicet al. [8] demonstrates the
capability of neural networks to detect speci�c locations. Com-
pared to place recognition video alignment however requires
a much �ner resolution. Figure 2 illustrates typical examples
of frame-pairs from different datasets which are considered as
similar for the speci�c task.

Learning similarities by training neural networks was done
previously for very speci�c applications such as signature
veri�cation [26], face recognition [27], [28] and comparing
image patches for depth estimation [29]. They rely on datasets
with extensive human annotations and reliable ground-truth
data.

III. D ATASET

Our underlying dataset comprises of 602 full-HD,30FPS
videos (1.8 TB of raw data) capturing 260 hours of com-
muters' car journeys on partially overlapping routes between
April 2012 and March 2013 and spanning over approximately
16; 000km. The videos were captured using a GoPro Hero 2
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Fig. 2. Comparing the data sets of related work. Each pair shows a typical
matching frame-pair. a) [24] only shows small changes in appearance and
perspective, b) [30] has a totally different view angles and c) [31] requires
only a constant time shift for alignment. For our dataset d), an alignment
method has to handle a different appearance and produce a playback with
non-linear speed.

camera mounted on the dashboard before every journey with-
out special adjustments. However, the view angle does not
feature differences as large as in place recognition tasks [8].

The acquired videos feature both rural landscapes and urban
scenes under varying traf�c conditions such as temporary road
works, rush hour, diverse weather conditions,e.g., snowfall,
rain, and seasonal environment appearance, for example ef-
fects of vegetation as well as different daytime illumination
(see Figure 2d) and the supplemental video https://youtu.be/
vhVsw4qoe70).

Most videos show journeys between the same two cities but
still have a variation in start and end locations and the actual
roads driven. The temporal alignment of the videos thus poses
a further challenge when trying to match stationary situations
like waiting in traf�c during rush hour with a video showing
little traf�c. This is different to linear video alignment tasks
like copy-detection described in [31].

The enormous range of possible variations in the video con-
tent which also suffers from a noisy acquisition (e.g. different
viewing angles, wipers, raindrops, camera transformation, etc.)
requires some understanding of context of the entire scene
rather than a simple local feature matching like histogram
based methods [4], [18], [25]. Moreover, the videos might
show interrupted content,e.g. when the lens is cleaned or
remounted during recording.

https://youtu.be/vhVsw4qoe70
https://youtu.be/vhVsw4qoe70


IV. U NSUPERVISEDCURRICULUM LEARNING

We propose a framework to learn descriptors for all frames
such that the Euclidean distance represents a similarity metric
between captured scenes or locations. By properly designing
the training protocol this generic approach features fast match-
ing computation, robustness against seasonal effects and it
does not rely on pre-existing labels for training.

The similarity metric can be exploited to robustly synchro-
nize videos as will be explained in Section IV-C. While �rst
establishing the procedure to align partially overlapping video
pairs (X; Y ) it is straightforward to extend it to multiple
videos in a collection (see Figure 13).

a) Curriculum Learning.: The algorithm alternates be-
tween two steps: thelearning step and thelabel generation
step. In the learning step, we assume given labels` and
train a neural network to produce meaningful descriptors
for a similarity metric � . The label-generation is based on
the current version of the trained network combined with
tour matching (Section IV-C) to exploit temporal consistency.
Given the learned similarity metric� novel, potentially more
reliable labels are produced, replacing the old ones.

Over multiple iterations, more and more sophisticated and
more informative training data is generated. None of these
steps requires any human annotation nor recorded GPS signals.

A. Learning Step

In the learning step we want to learn an embedding of
frames to establish a similarity measure between individual
frames(x; y). Relying on the currently available labels from
the training data we train a convolutional neural network
(CNN) [32] to predict a high-dimensional descriptor� i for
each framei such that the Euclidean distance

(x; y) 7! � (x; y) := k� x � � y k2 (1)

is small when the frames are similar and vice versa. We use
the standard ResNet-50 architecture [33] and add a projection
from thepool5layer to learn the 1000-dimensional descriptors
� i . As CNNs tend to learn edge �lters in the �rst layers,
we use a pre-trained ResNet version for object recognition as
initialization.

In order to ef�ciently train the concept of similarity the
triplet neural network approach [34] with weight-sharing is
used, which generalizes well to unseen examples. It requires
labels ` = ( a; p; n) in the form of triplets of frames: for an
anchor framea the label needs one similar or positive frame
p and one negative/dissimilar framen. The similarity metric�
(Eq. (1)) is enforced by minimizing the triplet loss by Hoffer
et al. [34]

L (a; p; n) =
h
m + k� a � � pk2

2 � k � a � � n k2
2

i

+
(2)

for some marginm 2 R. The �rst term penalizes embeddings
of similar frame-pairs(a; p) that are too far away from
each other in the high dimensional feature space. The latter
penalizes embeddings of negative (non-matching) frame-pairs
(a; n) if they are too close to each other (closer than some
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Fig. 3. Let (a; p; n) be a frame-triplet with descriptors(� a ; � p ; � n )
produced by the same CNN. During training, the CNN is optimized to embed
positive framesp close to the anchor pointa, while negative framesn are
pulled away from the anchor point if the distance is smaller than a margin
m.

marginm – Figure 3). In practice, we constrain this embedding
to live on thed-dimensional hypersphere,i.e. k� i k2 = 1 and
setm to 0:5.

B. Label Generating Step

While the learning step is rather straight-forward the chal-
lenge lies in automatically generating appropriate frame-triplet
labels as training data. This label-generating stepautomatically
harvestsnew training data for subsequent learning steps by
explicitly exploiting the coherence in videos and by proposing
and judging video alignments based on current knowledge.
The goal is to gather more and more informative training data
in each iteration by successively increasing the dif�culty,i.e. to
�nd positive frame pairs which show the same scene location
but with potentially different appearance as well as �nding
negative pairs which currently are assigned rather similar
embeddings. This is achieved in three waves:

Iteration 0: intra-videosampling of nearby frames for initial
training

Iteration 1+: inter-video sampling of frames from matching
tours

Iteration 2+: transitive inter-video sampling of frames from
matching tours by propagation of alignments to
other videos

After each iteration of the label-generating step we re-
trained the neural network in the learning step, alternating
between training and label generation.

a) Iteration 0.: In Iteration 0 one has to solve the
dilemma of generating reliable labels` without having any
trained network for proposing distances� . Instead we rely on
the inherent coherence within the same video. Any arbitrary
frame-pair which is at most 15 frames apart serves as positive
sample(a; p). Any other random frame suf�ciently far away
from a is regarded as a negative framen.

b) Iteration 1+.: After the �rst iteration the network is
trained and can now produce features� i for each framei
which is carried out for every tenth frame of all videos in the
data set. One can use the proposed� i for approximating the
pair-wise similarity, but since the network is not fully trained
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Fig. 4. Development of the cost matrix of the same video pair throughout
the iterative training process. Dark entries represent frame-pairs that are
considered similar having a small distance in the feature space. Note how
the path (red) of similar frame-pairs becomes more distinct. Large coherent
regions along the path indicate stand-still, e.g. waiting at a traf�c light. We
further highlight matching framesa; p and hard negativen.

yet it is essential to judge whether we can rely on a particular
frame encoding or not.

The criteria for accepting a positive frame pair or detecting
a negative one in this step is based on temporal coherence by
potential matching toursbetweendistinct videos (X; Y ). A
cost matrix

C = ( � (� x ; � y )) x;y ; x 2 X; y 2 Y (3)

can be computed containing all coarse pair-wise distances of
frames. Corresponding frames should have a small distance.
Though this might not always be the case in early iterations,
it might already be possible to detect a matching tour as
explained in Section IV-C,i.e. to �nd an optimal path through
the cost matrix (see Figure 4). If the path is suf�ciently distinct
the path will synchronize both videos correctly and all nodes
on the path resemble positive pairs with rowa and columnp,
independent of the currently proposed measure� (a; p). Some
new positive pairs might be found this way giving hints on
how to optimize the embedding in the next training phase.
Similarly, we can harvest challenging negative pairs(a; n) by
just choosing a columnn suf�ciently far away from the path.
Most informative will be such a pair if� (a; n) is currently
rather small, indicating similarity though the frames clearly
should be rated distinct.

Though we might not �nd all possible paths between
all videos yet, the resulting labels̀(a; p; n) will be more
informative than in the previous iteration as the appearance
between two videos will more likely be different even for
matching frames. The process is visualized in Figure 4 where

Fig. 5. Computed similarity matrix from the �rst iteration in our training
process (left). As they contain highly correlated entries, directly �nding a
matching tour would fail. After the de-correlation of the cost matrix (middle)
�nding a path (right) is signi�cantly more robust.

the correct matching path becomes more obvious and easier
to detect throughout the iterative training.

c) Iteration 2+.: Computing a cost matrix for each single
video pair is inef�cient. Instead, we propagate detected match-
ing tours transitively to other pairs. Based on the property of
“X and Y have a matching tour”, denoted asX � Y , is
a equivalence relation (meeting the requirements re�exivity,
symmetry and transitivity), we propose a transitive sampling.
In fact, our entire dataset can be split into distinct equivalent
classesV= � under the relationX � V when videosX
and V share a part of the same tour. Hence for any two
videosX andY 2 V=� we already know the existence of a
matching tourX � V and V � Y . Transitivity also directly
gives us a matching tour forX � Y if both share some
overlap. This allows us to sparsely sample video-pairs and
propagate matching frames across videos. Using a tree-based
index structure reduces the complexity toO(n logn) when
synchronizingn videos (see Figure 13). Through transitivity
one can establish matching tours which so far could not be
detected using the previously trained embeddings. With this
iterative process we can quickly generate a huge number of
challenging and informative training triplets`(a; p; n) even for
videos which have been captured months apart.

Starting in iteration 2 we mix the obtained training examples
from inter-video sampling (iteration 1+) and transitive inter-
video sampling (iteration 2+).

C. Finding Matching Tours

We will now describe how to �nd a matching tour given
a cost matrixC. The entire iterative scheme is based on
robustly detecting false-positives from the network prediction
and producing complex training data in a reliable way.

1) Pre-Processing: De-correlate Costs:Particularly in the
early iterations, the similarity matricesC produced by the
CNN contain a lot of false predictions, since it is not yet fully
adapted to the task. These errors exhibit a low-rank structure,
because any frame that is not correctly embedded is likely
to corrupt an entire column (or row) of the similarity matrix
(left of Figure 5). Additionally, some of the pairs are, indeed
rather similar although we would like to treat them as different.
For example, many journeys through rural areas with little
information but crop �elds on both sides of the road appear
extremely similar. As a pre-processing to the tour extraction



we remove those correlation effects by subtracting a low-rank
matrix approximationC0  C�

P r
k=1 Uk � k V ?

k from singular
value decompositionU� V ? of C. The result is illustrated in
Figure 5 (middle) using rankr = 5 . Abusing notation we
further denote the de-correlated cost matrixC0 asC.

2) Formulation as a Shortest Path Algorithm:The only
missing step for aligning a video pair is to �nd a plausible path
through its respective de-correlated cost matrix. Intuitively,
a path is a collection of consecutive frame-pairs of minimal
matching costs. Matching frame-pairs should lie on a clearly
distinct path in the cost matrix. A well-studied algorithm to
solve a shortest-path problem isDijkstra's Algorithm. For a
given start- and endpoint it computes the globally optimal path
with minimum cost. We shortly outline the vanilla grid-version
when applying to the cost matrixC.

a) Dijkstra's algorithm.: For detecting paths we only al-
low for three directions: downwards, rightwards and a diagonal
bottom-right step basically preventing reverse playback and
assuming non-negative costs,i.e. cij � 0. Given a start-entry
(s; t) and end-point(v; w) with s � v andt � w the algorithm
propagates costs~C in a dynamic programming approach with
entries

~cs;t = 0 ; (~c) i;j = min f ~ci � 1;j ; ~ci � 1;j � 1; ~ci;j � 1g (4)

(cdirect) i;j = arg min f ~ci � 1;j ; ~ci � 1;j � 1; ~ci;j � 1g (5)

and in�nite costs1 for not reachable frames. Following the
path backwards encoded in(cdirect) from (v; w) gives a path
P with lowest costs between(s; t) and(v; w). Figure 5 shows
such a path from our augmented version.

3) Augmented Dijkstra's Algorithm:Unfortunately, we nei-
ther know the start- nor end-point in contrast to the vanilla
version used in [4] nor can we guarantee that there is a path
through theentirecost matrix,e.g. consider different sub-tours.
For most videos of a large collection one does not even know
if two videos match at all. We augment Dijkstra's algorithm by
processing subsequences individually with the goal to �exibly
handle non-matching regions without corrupting the entire
path when searching for the global optimum over the entire
matrix.

The coarse cost matrixC is split along one time dimension
into multiple overlapping column-stripesC0; C1; : : : ; Cn (see
Figure 6) each containing 90 seconds of the video. Now, our
approach tries to �nd a matching tour through the entire cost
matrix building on possible tours from each stripe.

a) Local tours within stripes.:Let us consider such a
single stripeCk . Introducing an arti�cial start node with zero
costs to the left enables almost complete freedom regarding
the location of each match within one stripe. We are only
interested in �nding a matching tour from the leftci; 0 to the
right cj;N in the current stripe. Further, this arti�cial start node
allows us to treat each stripe individually

For the �nal extraction we remove path parts from the
overlap –taking all information but the overlap– as Dijkstra
tends to deviate (see Figure 7) from the correct path near the
borders of the stripe. For each stripe the vanilla regularized
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Fig. 6. Given a cost matrixC, we split up one video by dividing the cost
matrix into overlapping stripesC0 ; C1 ; : : :. Finding the local shortest path in
each stripe independently and testing for plausibility in the overlap region,
we obtain a reliable matching tour for synchronizing videos.

Ci

Fig. 7. For any decorrelated cost matrixC (left), we applied our augmented
Dijkstra's algorithm unaware of start- and endpoint for overlapping stripes.
This gives stripe-wise propagated costs for the entire video snippet (middle).
Our heuristic classi�es between non-consistent tours-snippets (red,e.g. the
deviation effect) and reliable tour-snippets (green). The parts illustrated as
blue lines will be only taken into account if the do not violate the global
consistency constraint. All images are best viewed in the electronic version.

Dijkstra's algorithm is applied as described fromSt to St +1

by only allowing the three mentioned directions. Each possible
path Pt = ( St ; p1; p2; : : : ; pn ; St +1 ) has associatedmatching
costsde�ned as

� (Pk ) =
X

p2 Pk

c(p); (6)

wherec(p) is equivalent to an entrycab in the cost matrixC
for the frame-pairp = ( a; b).

Combining local tours to a global matching tour.:As
a robust global matching tour does not necessarily span the
entire cost matrix and all stripes,e.g. for detours, we reject
local stripes which cannot be connected to any neighboring
stripes with a tolerance of up to two seconds. This tolerance
accounts for the fact that we currently only consider coarse
information (each 10-th frame).

Further, applying Dijkstra's algorithm to each stripe indi-
vidually might generate local paths of minimum costs, which
are not necessarily a matching tour – there does not have
to be such a matching tour at all. We therefore, reject local
stripes with entries(x; y) 2 Pk from the local matching tour,
if an alternative frame-pairp0 2 f (x � "; y ); (x; y � " )g does
not have signi�cant higher associated costs thanp, i.e. we
simply use the thresholdc(p0) > 6

5 c(p). This threshold might
be conservative but the speci�c choice only impacts a small
fraction of paths during exploration.



TABLE I
TIMINGS FOR EXTRACTING FEATURES FROM UNSEEN VIDEOS. ENABLING

HIGH FRAME-RATES IS ESSENTIAL ON LARGE-SCALE DATASETS.

approach [24], [25] [4] [31] ours

fps 0.11 3.77 15 140

All remaining frame-pairs from the global matching tour
are considered for the generation of the next training dataset
version.

D. Final Alignment of Videos

So far, we only considered each 10-th frame during training.
In order to prevent visual miss-alignment due to interpolation
artifacts in the �nal alignment the full temporal resolution is
required.

A coarse-to-�ne approach only computes entries of�C at
�ner resolution if they are near a matching tour in the coarse
cost matrixC. The global matching tour is split into chunks of
the same size. For each chunk, we compute all frame distances.
As the start and end point of the matching tour through a single
box is known, we directly apply vanilla Dijkstra's algorithm
without further modi�cation.

Modifying the playback speed of only one video would
introduce visible jumps and spurts in this video when matching
to the reference video. Consider a linear playback of a refer-
ence scene with green traf�c light, while the other video has to
jump over the frames when waiting on red. To achieve visually
pleasing video playback, we smooth the matching tour along
both time dimensions using Kalman �lters with the additional
constraint to not revert the time line of a single video.

V. RESULTS AND EXPERIMENTS

The following results and timings are obtained on a single
workstation with an Nvidia Titan X GPU. We demonstrate
the robustness on aligning a couple of challenging scenes. To
evaluate our method despite missing ground truth, we compare
our convnet prediction of similarity to [24], [25], the SIFT-
based histogram matching from [4], conducted a user study
and evaluate against a manually alignment of videos.

A. Timings and memory consumptions

Our approach compares favorably to a local-feature-based
approach concerning the run time (Table I) and has small
storage requirements (102 MB for the network weights). When
considering every 10-th frame of a single video with length
35 minutes, the embedding takes 45 seconds in total. This
allows us to ef�ciently compute new embeddings of the entire
dataset of 260 hours content for the training procedure within
less than half an hour using 12 GPUs.

The path detection and extraction procedure to pro-
duce coarse paths on unseen video-pairs of 35 minutes
each takes two seconds given the embeddings. This splits
into pairwise-distance computation (1071 ms, GPU), de-
correlation (370 ms, CPU) and path detection/computation
(405 ms, CPU). Computing the �nal matching tour takes 6

seconds due to multiple runs of the path �nding procedure
on �ner scale. This gives a speed-up factor of at least 300
compared to [4], [24], [25]. So far ours is the �rst ap-
proach enabling large-scale interactive applications. See the
https://youtu.be/vhVsw4qoe70 for a real-time demonstration.
For processing many more videos additional search structures
might be used.

B. What is the network looking for?

For aligning videos, the network has to distinguish between
relevant and irrelevant regions in the frame,e.g. the appearance
of traf�c and road lanes and the weather depend on the
moment of recording. To visualize which input information are
used inside the neural network for a particular prediction, we
compute saliency maps using guided-ReLU [35]. Informally, it
computes the gradient information of the network output wrt.
to the input images holding all weights �xed. This indicates
which pixel information in the input image have large impact
on the network prediction. Compared to the vanilla ResNet-
50 our trained model learned to ignore irrelevant information
like traf�c, see Figure 9. Instead it focuses on the shape of the
horizon and vegetation of the environment. This is not possible
by previous methods [18], [3], [4], [24], [25] as they also put
attention on passing cars and clouds as depicted in the lower
row of Figure 9.

SIFT
costs cleaned costs

ours

cleaned costs

a

b

Fig. 11. Although, there should be a matching tour between frames ina and
b through the entire video snippet, it is not possible to align both videos using
SIFT features [4]. Our network was able to learn similar feature embeddings
even between these videos taken in September 2012 and February 2013
respectively. The cost matrix in our approach contains reasonable information
for most frames.

C. Robustness and Accuracy

In contrast to methods solely based on aggregating SIFT
features, our method is able to even match videos captured
�ve months apart as depicted in Figure 11. Remarkably, as
the videos for the dataset are collected over multiple months
the network has learned to interpret scenes globally. Even
sequences where human interventions like tree-felling cause
a rather different look of the same scene, the corresponding

https://youtu.be/vhVsw4qoe70


Fig. 8. Each row contains pairs of coarsely aligned videos (every 10-th frame) across different seasons, lightning, weather conditions as well as vegetation.
These videos are taken from the validation set and are not used during training. Notable, the algorithm can robustly handle windscreen wipers, motion blur
and raindrops on the wind shield.

frame untrained trained

HARRIS SIFT ours

Fig. 9. The network (right) learned to ignore common content such as
traf�c or road lanes and instead focuses on striking environment information
compared to vanilla ResNet (middle). Previous methods [18], [3], [4], [24],
[25] rely on local features, capturing irrelevant information like the white car
in the lower row.

videos are correctly synchronized by our approach as we
enforce temporal consistency.

To evaluate the accuracy quantitatively, we manually judged

Fig. 10. The left frame was captured in November 2012 and right frame in
March 2013 after tree felling works. These kinds of differences cause high
matching costs of the found tour in our approach, but the situation is resolved
by our matching tour procedure exploiting temporal consistency.

500 tours predicted by our approach from the cost matrices
(see Figure 4, left). Note, how the accuracy increases over
the iterations. Hence, the harvested additional training data of
higher complexity results in a higher recall of found matching
tours.

In addition, we thoroughly annotated the videos from
Figure 8 for two experiments by manually �tting the best
visual matching frame, well knowing the shown locations and
temporal context. In a user-study we showed a single reference
frame and the manually aligned frames besides several similar
neighboring frames. The evaluation of 450 submitted results
from 14 participants is illustrated in Figure 8, which reveals
discordance between different participants on the same frame.
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Fig. 12. Comparison to human annotated alignment. After each iteration we
report (left) the number of found matching tours between videos and true
positives and the mis-alignment (right) against a human annotation.

Approximately, 53% agree with a tolerance of 4 frames.
This clearly demonstrates the dif�culty of this task, probably
caused by changes of camera perspective, lacking temporal
information in rural scenes or unfamiliarity with the shown
locations. This might also contain effects as in Figure 10.
Second, we directly compared the frame-distance between
our annotations and the extract path of our approach. This
compares favorably to our estimated human performance as
62% of the predicted frame-pairs have a frame offset of at
most 4 frames.

D. Limitations

Despite its good performance, our approach is subject to a
number of limitations. Ignoring the high-res input might drop
discriminative small local clues, which could be solved by
attention techniques [36], [37]. Spatial Transformer Network
Layers [38] which also facilitates optical �ow estimation could
account for spatial displacement between matching frames
caused by the current acquisition method. Recently proposed
methods like [39] can be included to also directly learn
spatial alignments. While we apply Kalman �ltering to smooth
the matching tours, one might formulate this as a discrete
optimization problem to include the produced matching costs
by the neural network.

VI. CONCLUSION

We present a novel combination of deep neural networks
and path �nding algorithms for synchronizing videos by ap-
proximating the similarity of frame-pairs based on the feature
embedding by a deep convolutional neural network. Matching
tours between two videos are determined along the resulting
frame-based similarity matrices. To improve the extraction of
the correct matching tours we propose pre-processing of these
cost matrices and a regularized version of Dijkstra's algorithm
on cost-stripes to satisfy time constraints. Our training method
relies on an iterative scheme to automatically gather new
labels completely avoiding manual annotations. The system
veri�es temporal consistency of predictions to create newly
labeled training data. Utilizing the transitivity of matching
tours between multiple video-pairs increases the complexity of
the input data gradually and allows us to robustly synchronize
videos months apart under different weather conditions and
vegetation.

The system opens up several exciting directions for future
research,e.g. label-transfer between densely annotated videos-
frames and automatically synchronized videos with different

Fig. 13. Multiframe temporal alignment: After quering similar and time
consistent video snippets using the learned embeddings, the approach is able
to robustly synchronize all found snippets to a reference video snippet.

appearances. Hence, the label annotation for large video
collections can be done in shorter time and for fewer costs.
Learning appearance modi�cation as in [40] or a dynamic
version of content blending as described in [41] are further
exciting applications, which can bene�t from our learning-
based approach for video synchronization.
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