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Figure 1. Aesthetically pleasing images. The complex matter of aesthetics depends on many factors like visual appearance, composition,
content, or style, and makes it almost impossible to directly compare all images if they are similarly beautiful.

Abstract

Rating how aesthetically pleasing an image appears is a
highly complex matter and depends on a large number of
different visual factors. Previous work has tackled the aes-
thetic rating problem by ranking on a 1-dimensional rating
scale, e.g., incorporating handcrafted attributes. In this pa-
per, we propose a rather general approach to map aesthetic
pleasingness with all its complexity into an automatically
“aesthetic space” to allow for a highly �ne-grained reso-
lution. In detail, making use of deep learning, our method
directly learns an encoding of a given image into this high-
dimensional feature space resembling visual aesthetics. In
addition to the mentioned visual factors, differences in per-
sonal judgments have a substantial impact on the likeable-
ness of a photograph. Nowadays, online platforms allow
users to “like” or favor particular content with a single
click. To incorporate a vast diversity of people, we make use
of such multi-user agreements and assemble an extensive
data set of 380K images (AROD) with associated meta in-
formation and derive a score to rate how visually pleasing a
given photo is. We validate our derived model of aesthetics
in a user study.Further, without any extra data labeling or
handcrafted features, we achieve state-of-the-art accuracy
on the AVA benchmark data set. Finally, as our approach is
able to predict the aesthetic quality of any arbitrary image
or video, we demonstrate our results on applications for re-
sorting photo collections, capturing the best shot on mobile
devices and aesthetic key-frame extraction from videos.

1. Introduction

The widespread use of digital devices allows us to take
series of photos so as not to miss any big moment. Man-
ually picking the best shots afterwards is not only time-
consuming but also challenging. In general, approaches
to automatically rank images towards their aesthetic appeal
can be useful in many applications, e.g., to handle personal
collections or for retrieval tasks. Overall, deciding how aes-
thetically pleasing an image appears is a highly complex
matter and depends on a large number of factors like visual
appearance, image composition, displayed content, or style.
Fig. 1 shows a set of beautiful images with different appear-
ance. Assume one would score each of them separately,
e.g., using gradesf 1; 2; : : : ; 10g to obtain some granularity.
This is not only a challenging task but, even more critical,
the mapping of these scores to anabsolutescale can lead
to wrong relationships between them. Asking forrelative
comparisons is not only an easier task to accomplish but
also results in a more reliable scaling. For images like in
Fig. 1 it is still almost impossible to directly compare all of
them, e.g., the beautiful warmth of a sunset can hardly be
generally related to the coolness of an image in style “noir”.
Overall, it is often unclear which particular attribute in�u-
ences the aesthetic comparison of an image pair the most.
Thus, we propose to arrange images in a high-dimensional
space to gain a better understanding on a very �ne-granular
level of how the aesthetic appeal correlates between them
without prede�ning speci�c factors. On saliency maps, we
further demonstrate the necessity of considering global fea-
tures in aesthetic tasks.
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Figure 2. Overview. Based on images we assemble from Flickr,
we derive a model that scores aesthetic appeal of an image from its
“views” and “faves”. This model then guides the training process
to learn �ne-grained relations in the high-dimensional “aesthetic
space”. Finally, our trained CNN is able to generate encodings for
any arbitrary image leading to several applications.

Additionally to the previously mentioned factors, dif-
ferences in personal judgments have a large impact on the
likeableness of a photograph. Nowadays, online platforms
allow users to “like” or favor certain content with a sin-
gle click. Usually people “like” beautiful images or, in
other words, aesthetically pleasing ones. Sometimes, peo-
ple might also favor images for other reasons like based on
their scene content, e.g., picturing the newest mobile phone.
However, our user study indicates that our derived model is
still reliable. In this work, we consider both, the complex-
ity of aesthetics in its high-dimensionality as well as a huge
diversity of multi-user online ratings to obtain broad infor-
mation about aesthetic relations without extra data labeling.

An overview of our method is illustrated in Fig. 2. First,
we assemble a large amount of images from Flickr and
present a new database to exploitAesthetic Ratings from
Online Data(AROD). Therefrom, we derive a model of aes-
thetics to score the quality of an image by making use of the
huge amount of available online user behavior, the “views”
and “faves”. Then, we make use of deep learning and in-
clude the introduced measurements of aesthetic appeal in-
directly as hints to guide the training process. Thereby, we
only incorporate the information if two images are aesthet-
ically similar or not instead of using the direct score. This
allows us to consider every single image relatively to other
images – even if they do not seem visually comparable, i.e.,
due to large differences in their visual factors like appear-
ance, displayed content, or style. Our trained CNN is then
able to directly learn an encoding of any given image in a
high-dimensional feature space resembling visual aesthet-
ics. Our “aesthetic space” encodes the complex matter of
aesthetics, that not every pair can be directly compared, on
a highly �ne-grained resolution of relative distances. Fi-
nally, as those encodings can be obtained for any arbitrary
image, we demonstrate how they can be easily transferred
into several applications on images as well as videos. In
summary, our main contributions are:

� A new large-scale data set containing dense and di-
verse meta information and statistics to reliably predict
visual aesthetics and which is easily extendable.

� A model that approximates aesthetic ratings on a broad
diversity without speci�cally requesting expensive la-
bels beforehand and which we validate in a user study.

� Formulating the complexity of aesthetic prediction as
an encoding problem to directly learn the feature space
allowing for �ne-granularity of relative rankings on a
high-dimensional level.

� Application prototypes such as an app for mobile de-
vices, a photo-collection manager powered by visual
aesthetic prediction as well as a video processing tool
to score frames.

2. Related Work

Aesthetics in Images. Previous research on visual aes-
thetics assessment focused on handcrafted visual cues such
as color [37, 6, 36], texture [6, 19], or content [7, 30].

Generally, no absolute rules exist to ensure high aesthetic
quality of a photograph. Photo quality has been explored to
distinguish between high and low quality [19] or classify
between the aesthetic quality of a photograph taken from
a professional vs a laymen [40]. Besides of quality, inter-
est has arisen towards the importance of images. Thereby,
previous work has exploited if and to which extent an im-
age can be predicted as “popular” [20], “memorable” [14],
or “interesting” [7, 11, 8]. Thereby, aesthetics played roles
like how it in�uences the memorability of an image [14].
Also, the relationship between aesthetics and images has
been explored from multiple perspectives [17]. Further,
making use of deep learning, the “style” of an image has
been of recent interest: either to recognize a speci�c im-
age style [18] or even to manipulate images by transferring
artistic style from a painting to a captured photo [9, 16].
Such style attributes have been incorporated to improve aes-
thetic categorization [28]. In addition to style, the composi-
tion of an image largely in�uences aesthetic pleasingness
and has been explored in terms of rules or enhancement
[15, 26, 10]. Overall, many approaches have investigated a
lot of work to �nd adequate attributes to approach aesthet-
ics, e.g., generic image descriptors [32], attributes humans
might use [7], cues performing psychological experiments
[11], features based on artistic intuition [6], content-based
features [30], or features with high computational ef�ciency
[27]. Other methods have focused on classifying the aes-
thetic appeal restricting their content to consumer photos
with faces [23, 24], consumer videos [34, 1] or other visual
domains, e.g., paintings [22] or evolved abstract images [4].
In contrast to those previous methods, we aim for a gen-
eral approach to explore the global overall aesthetic appeal
without any necessity to restrict image content or de�ne any
speci�c attributes or properties.



Table 1. Comparison of different data sets containing images for
judging visual pleasingness of images. * Per image

properties AVA [35] AADB [21] AROD (ours)

max ratings* 549 5 2.8M
mean ratings* 210 5 6868
rating distr. normal normal uniform
number of images 250K 10K 380K
avg. image size 602� 689 773� 955 1926� 2344

Deep Metric Learning. Neural networks are capable of
organizing arbitrary input in a latent space. Approaches di-
rectly manipulating this space have been successfully ap-
plied to signature veri�cation [2], face recognition [5, 41]
and comparing image patches [42] for depth estimation.
Hereby, feature representations of the inputs are optimized
such that they describe similarity relations within the data.
Therefore, metric learning methods such as Siamese net-
works [5] and Triplet networks [13] are widely used. In-
spired by those successful networks, we now approach the
aesthetic learning problem by directly optimizing a metric
to position aesthetic relations in a high-dimensional space.

Deep Learning Aesthetics. Transferring aesthetics into a
deep learning approach without de�ning hand-crafted fea-
tures has been formulated as a categorization problem based
on extracting patches for training [28, 29]. However, reduc-
ing visual content to small patches can destroy the global
appearance which is important for aesthetic tasks. In con-
trast, we incorporate the entire image and demonstrate the
importance of global features on saliency maps.

Other methods have considered image quality rating as
a traditional classi�cation or regression problem predicting
a single scalar information real or binary [35, 21]. Thus,
they do not meet the complex nature of aesthetics as they
oversimplify the task. They focus on a single scale problem
that even humans might not be able to solve as they proba-
bly disagree on the actual level of visual pleasingness. Fur-
ther, these approaches either use hand-crafted features [21]
or examine a data set of small annotation density [35, 21].
In contrast to those methods, we make use of deep metric
learning to transfer the problem of aesthetic ranking into a
high-dimensional feature space representation. We rely on
the plain image without de�ning any kinds of attributes.

3. Data Sets

Generally, the training of deep networks requires large
annotated data sets [38, 25] to obtain reliable results. Fur-
ther, as visual aesthetics of photos is highly subjective de-
pending on the current mood as well as any emotion, train-
ing a data-driven model requires extensive, diverse anno-
tations. To overcome �aws of previous benchmark sets, we
introduce a new data set with a comparison given in Table 1.

3.1. Previous Data Sets

AVA. The AVA data set [35] provides 250K images clas-
si�ed in visually well-crafted and mediocre ones on a �x
scale. These images are obtained from a professional com-
munity of photographic challenges. Through their anno-
tation process only a very small amount of annotations are
collected in comparison to the dimensions of social network
members comprising also non-professional photographers.
Note, to reliably judge image aesthetics it is inevitable to
consider the consensus of highly diverse participants.

AADB. Recently, Konget al. [21] introduced a new aes-
thetics and attributes data set (AADB) comprising of 10K
images. Each individual image score in AADB repre-
sents the averaged rating of �ve AMT (Amazon Mechanical
Turk) workers, who areaskedto give each image an over-
all aesthetic score. In addition, they provide attribute as-
signments from 11 prede�ned categories as judged by AMT
workers. Their database maintains photos downloaded di-
rectly from Flickr which are likely to be not post-processed
in contrast to professional results contained in AVA [35].

3.2. Our Flickr Subset

Whereas AADB is quite small, the image data of AVA
seems rather biased. Besides, both only provide a small
amount of collected ratings (Table 1). Thus, we propose a
new, much larger data set comprising aesthetic ratings from
online data (AROD). This data can be downloaded immedi-
ately, including meta-data as well as extensive, diverse la-
bels, without the need to collect extra ratings spending ad-
ditional time, effort, and money.

AROD. A single click allows users to give feedback to
media content. We propose to use this information. E.g.,
Flickr allows to add any photo to a personal list of favorites,
which is counted as “faves”. Since this feature is optionally,
users are absolutely free to add a particular image to their
favorite list. Their only motivation is to tag a photo which is
worth to remember. In addition, these images are uploaded
without a purpose to participate in a concrete challenge and
are not limited to a speci�c topic.

To collect these image we crawl around 380K photos
from Flickr including meta data such as their number of
views, comments, favorite list containing this photo, title
of the image and their description from the Flickr website.
Our collection contains images which were published and
uploaded between January 2004 and November 2016. As
each photo is visited� 7K times in average, this allows for
a much �ner granularity and gives more hints about aesthet-
ics of images compared to previous data sets. Based on this
data, we derive a model to obtain information about aes-
thetic pleasingness of the underlying image.



4. Model of Aesthetics

In online platforms, people usually tend to “like” beau-
tiful images or, in other words, aesthetically pleasing ones.
Thus, we now aim to explore those multi-user agreements
and turn them into a new useful measurement towards aes-
thetic appeal. We extract time-independent statistics, the
“faves” and “views” (Fig. 2), which contain information
traits about the underlying image quality.

4.1. Model De�nition

Previous attempts tried to directly regress some score or
trained a simple binary model [36, 6] to decide whether an
image is visually pleasing or ordinary. To overcome the
classi�cation approaches Konget al. [21] employ a mod-
i�cation of the Siamese loss-function [2] to re-rank im-
ages according their predicted aesthetic score. In contrast
to [21, 36, 6], we will leverage traits from freely available
information in social networks to score the image quality.
These statistics are only used as hints to guide the training
process rather than as a direct label or score.

To judge the pleasingness of an image we examine the
relation between the“views” (number of visits) and the
“faves” (number of clicks that favor image) as a proxy for
visual aesthetics. Both these landmarks are highly depen-
dent of visual aesthetics and encode the visual quality in
all its facets. In addition, the low hurdle of creating a feed-
back (“like” or “favor”) allows to average information being
orders of magnitude larger compared to data sets obtained
via AMT. This is especially necessary, when treating im-
ages which are highly debatable. As common in popula-
tion dynamics we assume exponential increase of the views
dV ( i )

dt = r V ( i ) � V (i ) and the favesdF ( i )
dt = r F ( i ) � F (i ) over

time t 2 N for any arbitrary imagei 2 I with growth rate
r ( �) > 0. This allows us to approximate the scoreS(i ) of
the image quality –independent of timet– by

S(i ) �
logF (i )
logV (i )

: (1)

This time-independence of any imagei is necessary when
using images with different online life-spans. In addition,
the model in Eq. (1) accounts for the effect of getting more
faves per image being a popular user at Flickr due to the
mechanism of followers. Note, the action not to add an
image to ones “faves” contains valuable information, too!
Considering the scoreS(i ) gives a criteria to rank images
i 2 I , which values can be imitated by neural networks (see
Fig. 3). A histogram of the distribution ofS(i ) (Eq. (1)) is
illustrated in Fig. 4. The uniform distribution of the data
shows that the data has high entropy which allows us to
even judge borderline images.

S=0.69 (182j1869) S=0.67 (2905j57K) S=0.67 (2264j40K) S=0.67 (3205j64K)

S=0.07 (1j6687) S=0.08 (1j1774) S=0.09 (1j1122) S=0.08 (1j1386)

Figure 3. Images from our data set with scoreS approximated
from attached meta (#favesj#views). Examples with large values
(top row) and rather low scores (bottom row) inS(i ) are shown.
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Figure 4. Distribution of the collected scoreS(i ). The uniform
distribution allows us to even judge images with borderline ratings.

4.2. Human Evaluation

As we introduce our aesthetic model as a score based on
online behavior from uncontrolled user clicks, we validate
the usefulness of our derived metric in a controlled experi-
ment. We formulate our hypothesesH as follows:

H 1: Our derived “aesthetic model” based on freely avail-
able ratings from an uncontrolled human online behav-
ior is reasonable.

H 2: Higher scored images are also rated better in a con-
trolled user study and worse ones are also rated worse.

Rating the aesthetic quality of an image is highly subjec-
tive and differs between persons. Performing a user study
over a diversi�ed crowd is inevitable to validate trends. As
stated by Buhrmesteret al. [3], Amazon Mechanical Turk
(AMT) yields reliable data on a demographically diverse
level. Thus, we use AMT to evaluate our aesthetic model.

Experiment Setup. To overcome differences in internal
ratings between persons, we aim forrelative ratingsinstead
of an absolute scale. Further, to ensure that images ob-
taining a higher score are really more pleasant than lower
scored ones, we design the study as pairwise preference
tests. The AMT workers are presented two images with
different scores as shown in Fig. 5. In each binary forced-



“Select the image that you think is aesthetically more pleasing:”

Figure 5. Example as seen by AMT workers. The task (top) is to
select one image of the presented pair (bottom).

choice task, the Turker is asked to select the image that
is “aesthetically more pleasing”. We directly ask for aes-
thetic selection to ensure that our score derived from online
“faves” is a suitable measure to rate aesthetics. From our
downloaded data set, we evaluate 700 randomly selected
image pairs. Each pair is presented to 5 Turkers. To negate
click biases, ordering as well as positioning are randomized.

User Study Results. In our user study, we randomly test
image pairs with varying distances between the scores de-
rived by our model. Thereby, the lowest scored images ob-
tained at least one fave. All evaluated distances are listed in
Table 2. Thereby, a small distance means that our derived

Table 2. User study results. More similar rating decisions of Turk-
ers are obtained for larger distances� = jS(i ) � S(j )j between
our derived scoresS(�) of the images within a pair.

dist � > 0:1 > 0:2 > 0:3 > 0:4 > 0:5 > 0:6

mean� 0:78 0:85 0:88 0:89 0:89 0:89
var � 2 0:07 0:05 0:04 0:04 0:04 0:04

sign. level� 10%(p < 0:10) 5%(p < 0:05)

scores are very similar and that the images are almost iden-
tically pleasing towards aesthetics. However, setting the
minimal distance between the scores of the 2 images in a
pair to0:1 is rated towards the similar direction by already
78%of the Turkers. Further, for score distances bigger than
0:4, even89% of the test persons agreed with the selec-
tion of the better image. Overall, we obtain ratings with
surprisingly small variance. Besides, the already relatively
small variance even further decreases with increasing dis-
tance. This indicates a high agreement between the different
Turkers. As veri�ed with a Kolmogorov-Smirnov test [33],
the underlying data does not come from a normal distribu-
tion. Thus, we veri�ed statistical relevance performing the
Mann-Whitney U-test [31] which rejected the null hypothe-
sis for all distances at least at the 10% level (p < 0:10) and
for � > 0:3 at the 5% level (p < 0:05) revealing statisti-
cal signi�cant dependency between the scores of our model
and the user study ratings (H 2). As we explicitly ask the
Turkers to rate due to the term “aesthetically pleasing”, our
presented scoreS(i ) can really be seen as an aesthetic mea-
sure validating our �rst hypothesisH 1.
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Figure 6. Previous approaches treat aesthetic learning as a low-
dimensional problem [21] which projects encodings on a 1-
dimensional or into discrete bins [35]. Rather than learning a bin-
mapping for each imagei 2 f a; b; cg into binsB i or directly � i ,
we propose to learn pair-wise distances� ij to resolve the highly
complex matter of aesthetics in a high-dimensional space.

5. Learning Aesthetics

As the visual quality of images is naturally hard to en-
code in a single scalar and it is hard to match images to dis-
crete bins of aesthetic levels, we aim for directly learning
an encoding of a given image in a high-dimensional fea-
ture space resembling visual aesthetics in contrast to 1-dim
ranking as in [21] (Fig. 6). We will refer to the feature space
as theaesthetic space. Ranking approaches like [21] predict
scalars and inherently assume that image orders are possible
on a 1-dim discrete or continuous rating scale. Hence, while
a latent group of images might be globally miss-placed in
the aesthetic space, our formulation allows to still order the
images within the speci�c group correctly.

5.1. Encoding Aesthetics

Inspired by metric learning [5, 13], our approach is to
directly optimizerelativedistances

� : I � I ! R; (i; j ) 7! k � i � � j k2

between encodings� i ; � j from image pairs(i; j ). We use a
CNN to learn these encodings, which will be described later
in detail. Importantly, this training procedure can be done
without associating images to any speci�cally requested rat-
ings or score from human annotators . Instead, it solely uses
the information if two images are similarly aesthetic or not
on an almostarbitrary scale. We minimize the triplet loss
function [13]

L e(a; p; n) =
h
m + k� a � � pk2

2 � k � a � � n k2
2

i

+
(2)

for imagesa; p; n and some marginm. Here,[x]+ denotes
the non-negative part ofx like the ReLU activation function.
This loss resembles a visual comparison, i.e., the distance
between two mediocre imagesa; p should be smaller than
the distance to a well-crafted imagen and vice versa. Note,
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Figure 7. Image triplet example for training with scoresS(i ). Each
triplet consists of either 2 good and 1 bad image concerning its
approximated quality (row) or 1 good and 2 bad ones (Fig. 8).

our objective function is not directly built on predictingS(�)
for a particular image on aspeci�c scale and range. To de-
cide whether two images are aesthetically similar or not we
use our scoreS(i ) to guide the sampling of the training data
consisting of image triplets

D =
�

(a; p; n)

�
�
�
� �<

jS(a) � S(p)j
jS(x) � S(n)j

< �; x 2 f a; bg
�

; (3)

with �; � 2 R. Thus, any pair(a; p) with a rather small
difference in the score allows for adaptively sampling of
much harder negativesn by rejecting triplets with too large
differences. An example of such image triplets is shown
in Fig. 7. We allow(a; p) to contain images with higher
or lower score thann for generating balance training data.
This approach has the following advantages:

1. Every single image can be considered during the train-
ing relatively to other images, which also allows to
train on highly debatable images.

2. There is no need to either learn a scalar or solve a
binary classi�cation problem in the fashion of rank-
ing [21] or aesthetic-label prediction [35]. Instead, we
learn the encoding itself.

5.2. Rating Aesthetics

As the encodings space� Rd is only a partially ordered
set, for any two imagesx; y knowing the aesthetic distance
k� x � � y k has no information ifx should be considered
as more visually pleasing thany. Thus, ordering multiple
images is not possible. If an “universally accepted” worst
image! would exist, then one might simply use the learned
distance� (x; ! ). But as we are allowed to rotate the entire
space, a more practical solution is to force the encoding into
a particular direction. We therefore add

L d(a; n) = sgn[s(n) � s(a)] � [k� ak � k � n k + ~m]+ (4)

as a directional term to the loss function. This leads the
triplet loss by reducing the norms of encodings belonging
to less visual pleasing images and increases the norms of
well crafted images. Note, that we again do not directly use
any absolute score values from our data model. Altogether,
we minimize the “directional triplet loss”:

L (a; p; n) = L e(a; p; n) + L d(a; n) (5)
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Figure 8. Triplet-Loss. For each triplet(a; p; n) with anchor point,
we aim at encoding aesthetically similar imagesa; p nearby and
force a larger distance to aesthetic dissimilar imagesn. AddingL d

to L e alters the update directions wrt. the aesthetic space origin! .

to get a natural ordering by the Euclidean norm and relative
distances. The effect ofL d is depictured in Fig. 8.

5.3. Learning the Aesthetic Space

Network Architecture. We use the standard ResNet-50
architecture [12]f � with trainable parameters� to learn
the encodings� i = f � (i ). We add a projection from the
pool5 layer creating a 1000-dimensional descriptor� for
each frame. Please refer to [12] for more details. Train-
ing was done on two Nvidia Titan X GPUs using stochastic
gradient descent with initial learning rate10� 3 which is di-
vided by 10 when the error plateaus.

Sampling Training Data. We randomly sample images
from our entire collection on-the-�y according toD in (3).
We estimate the cardinality ofD as jD j = 7 � 1012 from
tracking the reject-rate during training. Hence, no data-
augmentation is required, which would further in�uence
aesthetics. As ResNet expects the input to have the size
224� 224� 3, we resize the original image to match the
input dimensions. Although, this down-sampling might re-
move small details, it keeps the relations of the image con-
tent. Further, we are interested in the aesthetics quality,
rather than the photo quality from a computational photog-
raphy viewpoint.

5.4. From Space to Scale

To allow for multiple applications, e.g., ranking a set of
images, it can be necessary to map our derived encodings
within our high-dimensional space to a relative scale. As
described earlier, while a latent group of images might be
globally miss-placed in the aesthetic space, our formulation
allows to still order the images within the speci�c group
correctly. Thus, we simply consider the norm of the encod-
ing k� i k2 as the projection score. Thereby, independently
of the positions of the encodings in space, the relations be-
tween them stay maintained on the scale.



Table 3. Performance comparison on AVA data set. Different models (top row) with according accuracy (bottom row). Our approach
outperforms all models that do not use additional information and even most methods that include additional information during training.

Additional information during training No additional information

RDCNN Reg-Rank+Att Reg-Rank+Att+Cont Alexnet-FTune Murray Reg-Rank Reg SPP DCNN DMA Ours
[28] [21] [21] [29] [35] [21] [21] [28] [28] [29]

74.46 % 75.48 % 77.33 % 59.09 % 68.00 % 71.50 % 72.04 % 72.85 % 73.25 % 74.46 % 75.83 %

6. Experimental Results

We pursue two ways of evaluation in quantitative evalu-
ation on the common benchmark set and qualitative evalu-
ation to analyze the internal network mechanism. Further
results in combination with applications are presented in
Sec. 7 and the supplemental material.

Quantitative Evaluation. For a fair comparison to pre-
vious approaches, we �ne-tune our model network to the
distributions of the ratings in the AVA dataset [35]. This
is done using a subset of the AVA training data to pre-
dict discrete labels instead of relative embeddings. Table 3
shows such a quantitative comparison in accuracy to previ-
ous methods. Obviously, using an indirect approach such as
ranking (Reg+Rank [21]), which resemble the nature of aes-
thetic judgments much better than standard approaches like
classi�cation [28, 29, 35] yields also better performance on
this benchmark set. Ours further boosts this accuracy sig-
ni�cantly, which we attribute to the more natural choice of
our loss formulation. In contrast to previous work [21, 28],
we do not rely on a dedicated neural network architecture
using a rather common model design. Results on the left
use additional information such as attribute data or content-
description. Hence, although we trained on a data set which
was constructed with literally no extensive explicit labeling,
we outperformall previous methods relying solely on rat-
ings they obtained in an expensive process. Further, learn-
ing from the consensus of many Flickr users is suf�cient
to gain higher accuracy (our network) on the AVA bench-
mark set than recent approaches with additional attributes
(Reg+Rank+Attr, RDCNN). Note, these attribute categories
are acting essentially as a prior and were selected after con-
sulting professional photographers [21].

We expect to further improve our results when adding
more explicit information about the content like in the con-
struction of “Reg+Rank+Att+Cont”. As our main focus is
to exploit freely available information solely, this explicit
meta-information can be image-related comments and tags.

What is the network looking for? Judging the visual
quality of an image is totally different from plain object
recognition tasks. When extracting relevant information,
which is used by the neural network to perform aesthetics
prediction, it is possible to visualize prominent traits in the
input. To extract these saliency maps, we use guided-ReLU
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Figure 9. Different photographs (top) and related saliency maps
for vanilla ResNet (middle) and our model (bottom) produced by
guided-ReLU [39]. Darker region indicates higher in�uence on
the actual network prediction.

Figure 10. Aesthetically resorted photo set with decreasing score
from our provided tool starting with the most pleasing one (left).

[39]. It is based on the idea, that large gradients of the out-
put wrt the input have a high impact on the actual network
prediction. Fig. 9 highlights those pixels in the input with
large impact. Hence, this information is strongly coupled
with the encoding in our aesthetic space. It clearly shows
how our network considers larger regions in the image space
compared to sparse saliency along gradients in the untrained
network. More precisely, the network model reveals high
synergy effects between surrounding regions of the objects
in Fig. 9. At same time the vanilla ResNet (trained on object
recognition) rather focuses on the objects.

7. Applications

In order to demonstrate the usability of our approach, we
apply our derived aesthetics prediction score to images as
well as videos allowing for several applications. Thereby,
we map the encodings from space to a relative scale as de-
scribed in Sec. 5.4 maintaining �ne-granular relations.

Aesthetic Photo Collection. First of all, we support re-
sorting an arbitrary photo collection due to our predicted
relative aesthetic scores between the images. An example
of a small set of aesthetically sorted images is shown in
Fig. 10. This tool can facilitate to quickly resort one's holi-



Figure 11. Best video spots. Each frame is extracted at the peaks in the score signal.

Figure 12. Best handy shot. Based on slight movements in any
direction, the application automatically captures the best shot.

Figure 13. Best predicted image (blue frame) during capturing.
The movements were recorded with a mobile device.

day collection and directly share the best moments without
time-consuming manually browsing of the usually rather
large set of pictures.

Best Handy Shot. A commonly known situation is that
people want to take a picture but are not completely sure
what the best shot of the view could be. They tend to take
mulitple pictures and just postpone the decision process.
This can even lead to missing the one best shot completely.
We provide a simple application that allows slightly mov-
ing the phone around and temporarily captures a video. The
idea is illustrated in Fig. 12. All the single images are then
analyzed and rated by our system and the image of the best
view is saved. The application supports the user to directly
obtain the best aesthetically pleasing image and prevents the
time-consuming decision process afterwards. Fig. 13 shows
several frames from movements we recorded with a Sam-
sung Galaxy SII phone and the predicted best shots. Sky
proportions, saturation and the tension of the overall image
layout play an important role within the decision. Due to
its small memory footprint of only 102MB containing the
network weights, running this application directly on mo-
bile devices is easily possible. Please see the supplemental
video for a short demo. This application could further be
extended to lead the user to the best shot during the move-
ment while indicating better directions.

Video Spots. Similarly, our system is able to �nd great
shots in a video. Those shots can be selected as aesthetic

key frames or, e.g., in documentary �lms, to identify the
most wonderful places or spots. Therefore, we calculate a
complete prediction curve along the video displaying the
aesthetic relation between the frames. Fig. 11 displays an
example of a video and the according aesthetic prediction
curve. Kalman �ltering is applied to smooth the �nal pre-
dictions over time. Extracting the frame scores is done at
a speed of 140fps on a NVidia GTX960. Embedding com-
mon videos requires only 25% of the actual playback time
demonstrating high ef�ciency and enabling real-time appli-
cations. Please see the supplemental material for examples.

8. Conclusion

We propose a new data-driven approach which learns
to map aesthetics with all its complexity into a high-
dimensional feature space. Additionally, we make use of
online behavior to incorporate a broad diversity of user re-
actions as rating aesthetics is a highly subjective task. In
detail, we assemble a novel large-scale data set of images
from social media content. Hereby, aesthetics ground-truth
scores for training are obtainedwithout explicitly request-
ing user ratings in a time-consuming and costly process.
Hence, our dataset can be easily extended, as our approach
requires effectively no labeling-efforts using freely avail-
able information from social media content. The assump-
tion of our underlying model is validated in a user study. To
automatically judge aesthetics, we formulate the aesthetic
prediction directly as an encoding problem. Consequently,
we propose a more naturally loss objective for dealing with
the complex task of learning a feature representation of vi-
sual aesthetics. Our focus lies on the abstract representation
of aesthetics using online media. Thus, we solely rely on a
commonly used model architecture and use a much weaker
training signal which leads to state-of-the-art results on pre-
vious benchmarks. Finally, we con�rm the success of our
model in several real-world applications, namely, resorting
photo collections, capturing the best shot and a smooth aes-
thetics prediction along a video stream.
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